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Online fraud, from individuals to

Online fraud, The Economist, Nov'08
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Pilot Study to Measure Financial Fraud, Stanford Center
on Longevity & FINRA, Feb17

“Consumer fraud” costs
Americans more than $50bn
annually

companies & countries

2023
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Scam dunk
Global number of ransomware victims*, ‘000
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How ransomware could cripple countries,
not just companies, The Economist, Dec’23
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$1.5M individual
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https://longevity.stanford.edu/wp-content/uploads/2017/02/SCL-Fraud-Report-Feb-2017_Draft2.pdf
https://www.economist.com/news/2008/11/05/online-fraud
https://www.economist.com/international/2023/12/31/how-ransomware-could-cripple-countries-not-just-companies

Who are we?

Onfido is an online identity verification company.

We let businesses verify the identity of their customers.

o) onfido

an Entrust Company
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= onfido

Onfido’s 3 layers of identity verification

Do you have a Are you a Does your face
genuine 1D real life human? match your ID?
1 2 3

Turn your head left
—

then face forward
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Document Verification

Thousands of document types
Constantly changing attack vectors
Variable image quality (APl vs SDK)

Very low signal-to-noise ratio

19y onfido
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Biometric Verification

Low friction and accessibility
requirements

Bias reduction

Deepfakes and injection attacks

12+ onfido




Why online identity verification is hard

@

Low false alarm High fraud detection

& v

Global coverage Constantly evolving attacks

Onfido - Confidential &
Proprietary
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User

Production

Model training/fine-tuning

» pass/fail



Automation is key for online identity

Fast Cheap

(%) N

Robust Privacy-friendly




The computer vision pillars of IDV

5 ®

Face Matching Extraction Anomaly Detection
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Extraction on thousands of government IDs

Official sample - no PII



Classical extraction methods require human fallback

O @ +58

Template-based Hybrid
Convnet + LSTM &

A 4

33.4% 96.4%

Extraction accuracy on 10 fields


https://arxiv.org/abs/1507.05717

VLMs unlocks

)

Template-based
Convnet + LSTM

33.4%

much higher extraction accuracy

) O

VLM-based VLM-based
(out of the box) optimized
76.4% 94.6%

Extraction accuracy on 10 fields

@ +58

Hybrid
(template-based +
manual fallback)

96.4%


https://arxiv.org/abs/1507.05717

Leveraging LoRA for cost-efficient extraction

One model for all One model per One model per
document types document type group document type

Serving models at scale with LoRA, Martins Bruveris, Oct 2024



https://martinsbruveris.github.io/2024/10/10/lora-at-scale.html

The cost effectiveness of in-

In-house
10 g5 GPUs on the cloud -> $75K

3rd-party providers
$0.01/ task -> $1M

for 100M tasks

housing VLMs

%

More control

Fine-tune to your need

Increasing regulatory heat



Fraud detection as an anomaly detection problem

® Determine whether a document is fraudulent or not

® Given a large dataset of genuine samples and a smaller
dataset of frauds
® Across thousands of document types

® And a very large set of anomalies



Vision Transformers for anomaly detection

Higher quality
. .counterfeits: )
A il B ¥, SRS N = Embarrassing
fraud

Anomalous genuines

@ fraud @® genuine

L1 ]


https://onfido.atlassian.net/wiki/spaces/DF0/pages/120361279/Hybrid+Learning

Vision Transformers for anomaly detection

Leveraging Transformers for visual fraud detection

Left regular auto-encoder. Right a hybrid auto-encoder with a dedicated loss
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Few-shot learning for anomaly detection

Models require hundreds/thousands of samples for training.

Could we make it a few dozens?



Few-shot learning for anomaly detection

Our approach:
1. Multi-scale GEM embeddings

2. LLM-based prompt ensemble to capture anomaly

3. Zero-shot vision guidance using query image

Outperforms PatchCore and WinCLIP+
On par with AnomalyCLIP, AnomalyGPT and APRIL-GAN w/o auxiliary datasets

FADE Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model,
BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris



https://arxiv.org/abs/2409.00556

Few-shot learning for anomaly detection

Vision-guided anomaly classification and segmentation (few-shot)

Patch embeddings N Anomaly
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FADE Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model,
BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris



https://arxiv.org/abs/2409.00556

Few-shot learning for anomaly detection

Anomaly Classification MVTec-AD WVisA
Setup Method AUROC AUPR Fl-max  AUROC AUFPR F1-max
O-shot  WinCLIP 91.8+0.0 96.5+00 929+0.0 78.1+0.0 81.2+0.0 T79.0+0.0

FADE (ours)  90.0400 956400 924400 75.6+00 785400 78.6+00

l1-shot  PatchCore 834430 922415 905+15 799+29 H28+23 EBLTELSG
WinCLIP+ 93.1+20 96.5+09 937411 838+40 B5.14+40 BI1ELT

FADE (ours) 93.9+0.7 96.8+03 94.8+0.2 B86.7+2.0 879415 847408

2-shot  PatchCore 863433 938417 920+15 8lo+40 848432 B25+18
WinCLIP+ 944413 97.04+07 944408 B4.64+24 B58+27  B30+14

FADE (ours)  95.2+1.0 97.6+05 950+04 89.2+04 90.2+02 859+0.6

4-shot  PatchCore BE8x26 945x15 926£16 833x21 875%21 B43x13
WinCLIP+ 952+13 973406 947+08 873+18 BEBEI8 B42+16

FADE (ours) 963404 98.14+02 955404 90.7+03 919404 87.040.2

Table 1: Comparison of AC performance on MVTec-AD and
VisA. We report the mean and standard deviation over 5 random
seeds. Bold indicates the best performance.

FADE Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model,
BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris



https://arxiv.org/abs/2409.00556

Meta-learning for low-sample training
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Work presented at ML Prague 2023

Meta-learner

Better model


https://www.mlprague.com/prague2023/

Meta-learning for low-sample training

Zero-shot: MAML outperforms the best pretraining

baseline

Few-shot: MAML outperforms significantly in low-data

regime, on par in high-data regime

Work presented at ML Prague 2023



https://www.mlprague.com/prague2023/
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Data generation enables faster iteration




Deepfakes are a curse... and a blessing

Synthetic documents




Many problems are still open

@ Distillation and transfer learning
® On-device / efficient ML
@ Sclf-supervised learning

® Few-shot learning



We share with the community

= O

FADE: Few-shot/zero-shot Anomaly
Detection Engine using Large Vision-
Language Model, BMVC 2024, Yuanwei Li,
Elizaveta lvanova, Martins Bruveris

tfimm

clusterfun

Serving models at scale with LoRA,
Martins Bruveris, Oct 2024

Enhancing Deep | earning with Bayesian Inference,
Sept’23, Matt Benatan, Jochem Gietema, Marian
Schneider



https://github.com/martinsbruveris/tensorflow-image-models
https://github.com/gietema/clusterfun
https://arxiv.org/abs/2409.00556
https://arxiv.org/abs/2409.00556
https://arxiv.org/abs/2409.00556
https://martinsbruveris.github.io/2024/10/10/lora-at-scale.html
https://www.amazon.com/Enhancing-Deep-Learning-Bayesian-Inference/dp/180324688X
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