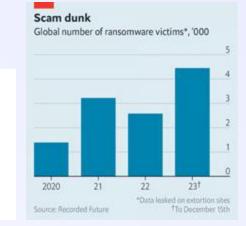
Preventing fraud with vision in the age of Generative AI

Olivier Koch, VP of Applied AI


AIAI Boston - October 17, 2024

Online fraud, from individuals to companies & countries

2023

How ransomware could cripple countries, not just companies, The Economist, Dec'23

\$1.5M individual ransom payment

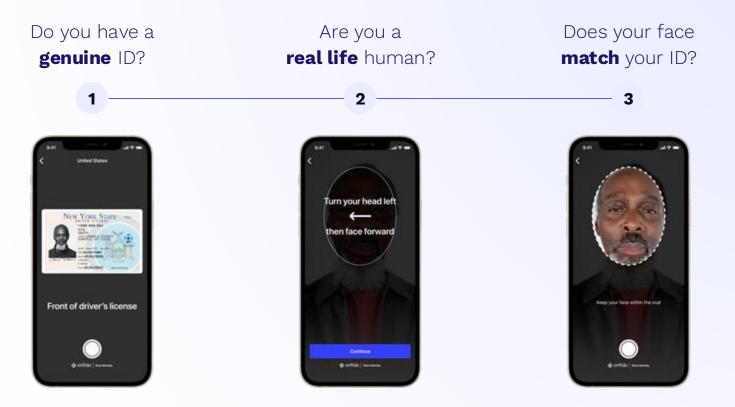
2008

Online fraud, The Economist, Nov'08 🥏

2017

Pilot Study to Measure Financial Fraud, Stanford Center on Longevity & FINRA, Feb'17 $\ensuremath{\mathscr{O}}$

"Consumer fraud" costs Americans more than \$50bn annually


Onfido is an online identity verification company.

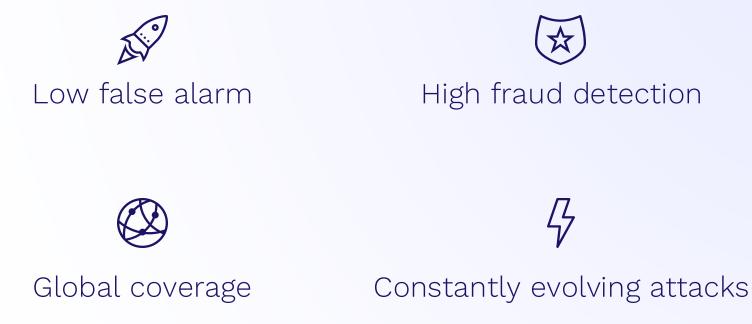
We let businesses verify the identity of their customers.

Banks	Investing	Payments	Gaming	Travel	
Revolut	DRIVEWEALTH	Klarna.	KINGS	🜏 zipcar.	
BARCLAYS	TR^DING 212	MANGOPAY	bet <mark>365</mark>	Hertz	
HSBC	C Freetrade		Dilliam HILL	Europcar	
•Sabadell	Pension	adyen	Mega3et*	drivy	
Sabauen	Londing & Mortgogo	C LEMONWAY		011	
bung	Lending & Mortgage		Healthcare	Other	
axiata	affirm	mollie	o doctor care anywhere.	DocuSign	
	💈 zilch	AstroPay	Οραργιοη		
Aspiration	moneyb		Teladoc.	deliveroo 🛃	
Millennium	ΖΟΡΑ	sumup*		orange"	

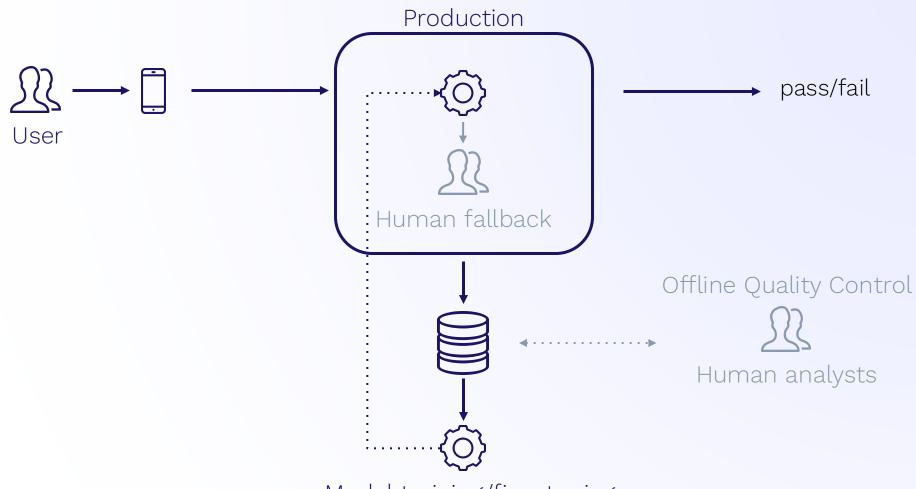
Onfido's 3 layers of identity verification

(••) **Document** Verification

- + Thousands of document types
- + Constantly changing attack vectors
- + Variable image quality (API vs SDK)
- + Very low signal-to-noise ratio

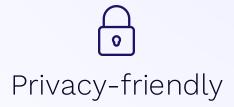


• **Biometric** Verification


- + Low friction and accessibility requirements
- + Bias reduction
- + Deepfakes and injection attacks

Why online identity verification is hard

Onfido - Confidential & Proprietary


Model training/fine-tuning

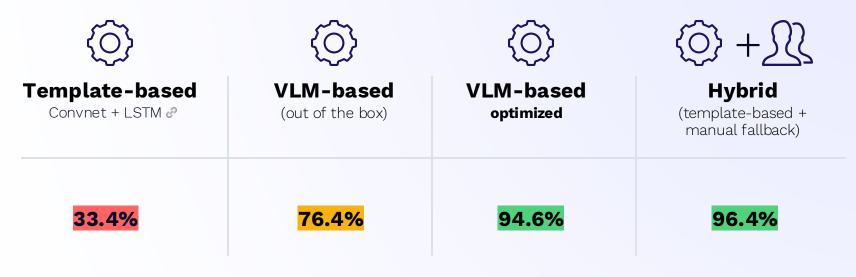
Automation is key for online identity

The computer vision pillars of IDV

Extraction on thousands of government IDs

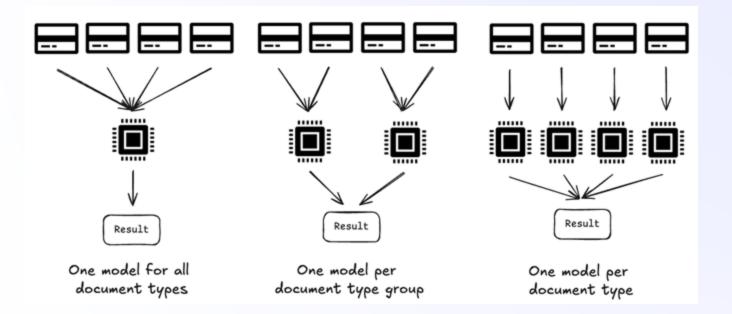
Official sample - no PII

Classical extraction methods require human fallback



96.4%

Extraction accuracy on 10 fields


VLMs unlocks much higher extraction accuracy

Extraction accuracy on 10 fields

Leveraging LoRA for cost-efficient extraction

Leveraging large open-source pre-trained models

Serving models at scale with LoRA, Martins Bruveris, Oct 2024

Onfido - Confidential & Proprietary

The cost effectiveness of in-housing VLMs

In-house

10 g5 GPUs on the cloud -> \$75K

3rd-party providers

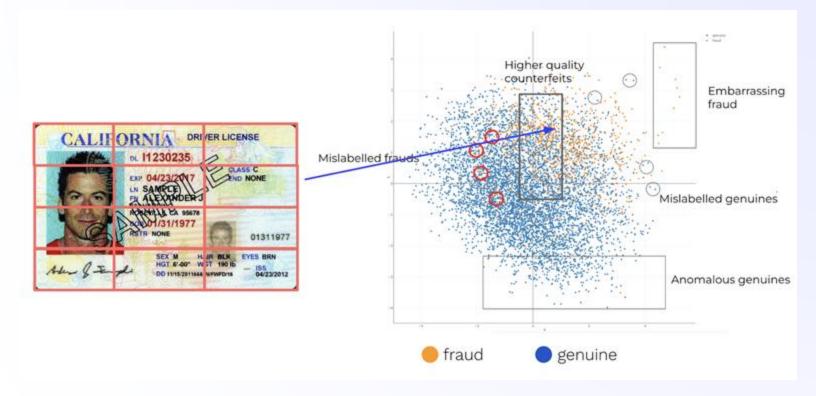
\$0.01 / task -> \$1M

for 100M tasks

More control

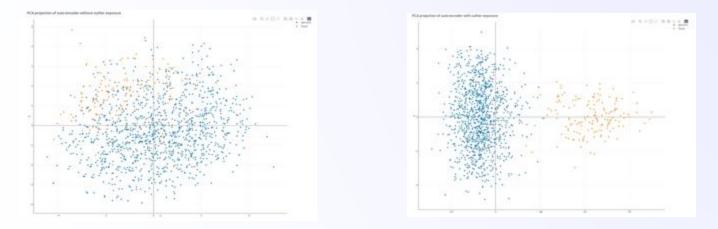
Fine-tune to your need

Increasing regulatory heat


Onfido - Confidential & Proprietary Fraud detection as an anomaly detection problem

Determine whether a document is fraudulent or not

- Given a large dataset of genuine samples and a smaller dataset of frauds
- Across thousands of document types
- And a very large set of anomalies


onfido

Vision Transformers for anomaly detection

Vision Transformers for anomaly detection

Leveraging Transformers for visual fraud detection

Left regular auto-encoder. Right a hybrid auto-encoder with a dedicated loss

$$\min_{ heta,\phi} rac{1}{N_G} \sum_{i=1}^{N_G} ||g_\phi(f_ heta(\mathbf{x}_i)) - \mathbf{x}_i||^2 - rac{1}{N_F} \sum_{j=1}^{N_F} ||g_\phi(f_ heta(\mathbf{x}_j)) - \mathbf{x}_j||^2$$

Onfido - Confidential & Proprietary

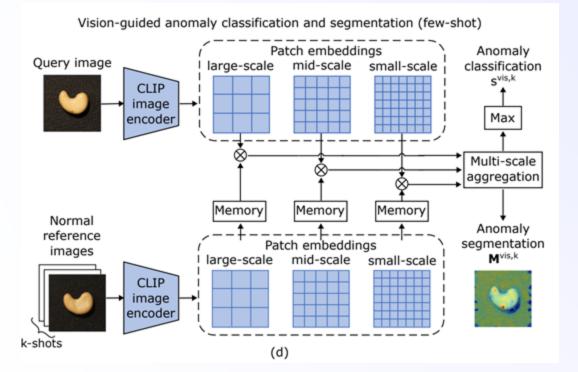
Few-shot learning for anomaly detection

Models require hundreds/thousands of samples for training.

Could we make it a few dozens?

Few-shot learning for anomaly detection

Our approach:


- 1. Multi-scale GEM embeddings
- 2. LLM-based prompt ensemble to capture anomaly
- 3. Zero-shot vision guidance using query image

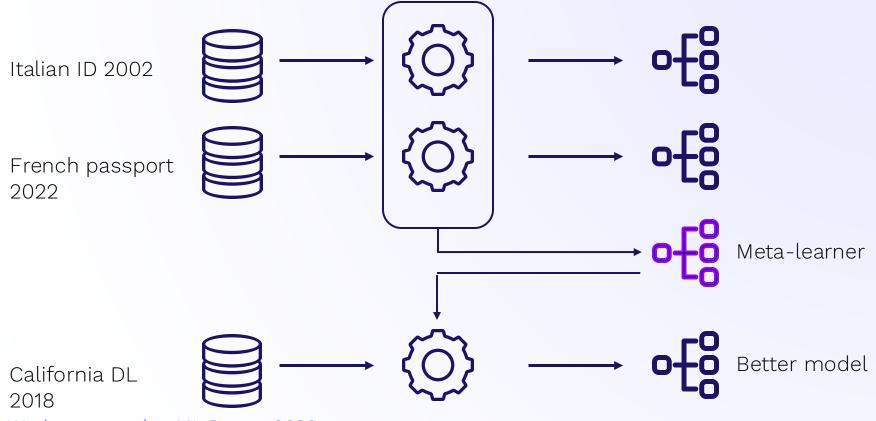
Outperforms PatchCore and WinCLIP+

On par with AnomalyCLIP, AnomalyGPT and APRIL-GAN w/o auxiliary datasets

<u>FADE Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model,</u> BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris

Few-shot learning for anomaly detection

<u>FADE Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model</u>, BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris


Few-shot learning for anomaly detection

Anomaly Classification		MVTec-AD			VisA		
Setup	Method	AUROC	AUPR	F1-max	AUROC	AUPR	F1-max
0-shot	WinCLIP	91.8±0.0	96.5±0.0	92.9±0.0	$\textbf{78.1}{\pm 0.0}$	$81.2{\pm}0.0$	79.0±0.0
	FADE (ours)	$90.0{\pm}0.0$	$95.6{\pm}0.0$	$92.4{\pm}0.0$	$75.6{\pm}0.0$	$78.5{\pm}0.0$	78.6±0.0
1-shot	PatchCore WinCLIP+	$83.4{\pm}3.0$ $93.1{\pm}2.0$	$\begin{array}{c} 92.2{\pm}1.5\\ 96.5{\pm}0.9\end{array}$	90.5 ± 1.5 93.7 ± 1.1	$79.9{\pm}2.9$ $83.8{\pm}4.0$	$82.8{\pm}2.3$ $85.1{\pm}4.0$	81.7±1.6 83.1±1.7
	FADE (ours)	93.9±0.7	$96.8{\pm}0.3$	$94.8{\pm}0.2$	86.7±2.0	87.9±1.5	84.7±0.8
2-shot	PatchCore WinCLIP+	86.3±3.3 94.4±1.3	$\begin{array}{c} 93.8{\pm}1.7\\ 97.0{\pm}0.7\end{array}$	$\begin{array}{c} 92.0{\pm}1.5\\ 94.4{\pm}0.8\end{array}$	$81.6{\pm}4.0$ $84.6{\pm}2.4$	84.8±3.2 85.8±2.7	$82.5{\pm}1.8$ $83.0{\pm}1.4$
	FADE (ours)	95.2±1.0	97.6±0.5	95.0±0.4	89.2±0.4	90.2±0.2	85.9±0.6
4-shot	PatchCore WinCLIP+	$\substack{88.8 \pm 2.6 \\ 95.2 \pm 1.3}$	$^{94.5\pm1.5}_{97.3\pm0.6}$	$92.6{\pm}1.6 \\ 94.7{\pm}0.8$	$85.3{\pm}2.1$ $87.3{\pm}1.8$	$^{87.5\pm2.1}_{88.8\pm1.8}$	$^{84.3\pm1.3}_{84.2\pm1.6}$
	FADE (ours)	96.3±0.4	$98.1{\pm}0.2$	95.5±0.4	90.7±0.3	91.9±0.4	87.0±0.2

Table 1: Comparison of AC performance on MVTec-AD and VisA. We report the mean and standard deviation over 5 random seeds. Bold indicates the best performance.

<u>FADE Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model</u>, BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris

Meta-learning for low-sample training

i onfido

Work presented at ML Prague 2023

Meta-learning for low-sample training

Zero-shot: MAML outperforms the best pretraining baseline

Few-shot: MAML outperforms significantly in low-data regime, on par in high-data regime

Work presented at ML Prague 2023

Data generation enables faster iteration

i onfido

Deepfakes are a curse... and a blessing

Synthetic documents

Onfido - Confidential & Proprietary

Many problems are still open

• Distillation and transfer learning

- On-device / efficient ML
- Self-supervised learning
- Few-shot learning

We share with the community

<u>FADE: Few-shot/zero-shot Anomaly</u> <u>Detection Engine using Large Vision-</u> <u>Language Model</u>, BMVC 2024, Yuanwei Li, Elizaveta Ivanova, Martins Bruveris

<u>Serving models at scale with LoRA,</u> Martins Bruveris, Oct 2024

Enhancing Deep Learning with Bayesian Inference, Sept'23, Matt Benatan, Jochem Gietema, Marian Schneider \mathbf{O}

tfimm 😭 Star 267 clusterfun 😭 Star 14