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Motivation

» Navigation guidance to humans
— Finding our way in complex/new environments

Why is it hard?
— No external source of localization (GPS)
— Unknown environment (no map)

Why should you care?

— Soldiers in the field

— Visually impaired

— Guidance in public places (hospitals, museums)
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Vision-based navigation

Four Pointgrey Flrefly MV Cameras (640x480 8-bit grayscale images)
FOV: 360° (h) x 90° (v)

Why vision?

v" Light, inexpensive, compact
v" Rich information (vs laser rangerfinders)
v No temporal drift (vs inertial sensors)
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Uncalibrated cameras

Four Pointgrey Flrefly MV Cameras (640x480 8-bit grayscale images)
FOV: 360° (h) x 90° (v)

Why use uncalibrated cameras?

» Intrinsic calibration is tedious
» Extrinsic calibration is hard for body-worn applications



Problem statement

Input

Live video stream from
wearable set of uncalibrated
cameras




Problem statement

Input

Live video stream from
wearable set of uncalibrated
cameras

Output

Body-relative guidance for:

» Homing (going back to start point)
» Replay (from start point to end point)
= Point-to-point navigation




Sample dataset

speed x 2
ol
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Method overview

= Exploration path: undirected graph (place graph)
= Node: physical location in the world
= Edge: physical path between two nodes traversed by the user

v Makes no assumption on user motion between nodes
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Method overview

" Local node orientation: direction of the user leaving the node
> Assume smooth user motion
= Local node observations (visual features)

» Assume distinctive feature visibility

v No global coordinate frame
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Method overview

= Node-to-node “hopping” problem
v" Does not require metric mapping of the environment

» Assumes that user stays in the graph during guidance

Determine location of user in the graph Guide the user at that location
(local node estimation) (rotation guidance)

?




" Loop closure detection
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Limitations & advantages

= Limitations
» User leaving exploration path
» Smooth user motion
» Distinctive features visibility

= Advantages
= Provides intuitive, body-relative guidance
= Requires no extrinsic or intrinsic camera calibration
= Scales to arbitrary large environments




Related work

Visual Simultaneous Localization and Mapping (SLAM)

= Davison et al., MonoSLAM: Real-Time Single Camera SLAM, PAMI '07

= J. Neira et al., Data association in O(n) for Divide and Conquer SLAM, RSS
‘07
=  Wolf et al., Robust Vision-Based Localization by Combining an Image

Retrieval System with Monte Carlo Localization, IEEE Transactions
Robotics '05

= Konolige, Agrawal et al., . Mapping, Navigation and Learning for Off-road
Traversal, Journal of Field Robotics ‘08

Metric and topological localization

» Zhang & Kosecka, Hierarchical Building Recognition, Image and Vision
Computing ‘07

= B. Kuipers, Using the topological skeleton for scalable global metrical map-
building, IROS '04



Related work

Appearance-based navigation

= Cummins & Newman, Probabilistic Appearance Based Navigation and Loop
Closing, ICRA’07

= Collet, Landmark learning and guidance in insects, Ph. Trans. Roy. Soc.
London, 1992

» Chen & Birchfield, Qualitative vision-based mobile robot navigation,
ICRA06

» Zhang & Kleeman, Robust appearance-based visual route following for
navigation in large-scale outdoor environments, IJRR'09
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The place graph

= World as an undirected graph G = (V, E)

Object Represents... Data Structure
Node Location in the world Visual features (e.g. SIFT)
Edge Physical path between two N/A

nodes




The place graph

= Similarity function ¥( )

— Input: two sets of features F,, F,
— Output: average L2-distance for all feature matches between F, and F,

= Creating a node whenever ¥ > 6

142

In practice, new node every three
seconds (5 meters) at human-walking
speed.
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Local node estimation

" |Input position of the user in the map at time t-1
observations at time t

= Qutput  position in the map at time t

= User motion = Markov process

= Recursive Bayesian estimation
— State x,: position in the map at time k (node label)
— Measurement z,: observations at time k (SIFT)




Local node estimation

P(X | Z41) = Z P(X [ X 1) P(X 4 |Z,,) (prediction)
P(X [2) =4 Pz | %) P(Xy | Z44) (update)
p(z, | X) ~ P(% [ X 4) =N(0,0)

e+ (X, Z,)

Zi1 Z;




Local node estimation

P(X | Z41) = Z P(X [ X 1) P(X 4 |Z,,) (prediction)
P(X [2) =4 Pz | %) P(Xy | Z44) (update)
p(z, | X) ~ P(% [ X 4) =N(0,0)

e+ (X, Z,)

= Compute pdf over a local neighborhood of current position only
= No new node creation
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Local node estimation
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Rotation Guidance

= Input current position of user in the graph
current observations

= Qutput guidance to next node in user’s body frame

= Approach visual learning



The relative orientation problem

= Problem Estimate the relative user orientation between
two visits of the same location (in 2D)

time t timet >t

SV SV

sP) ¢




The relative orientation problem

= Assuming intrinsic & extrinsic camera calibration
= World features = bearing measurements (a.,B,...)

First visit (time t) Second visit (time t' > 1)

v p-oa
World coordinate f Body coordinate
frame rame




The relative orientation problem

= Assuming no intrinsic & extrinsic camera calibration

. . N\
— Bearing o — coarse bearing o
/\ .
— « : average of all possible measurements on the camera

PE) ol PG} PD A_A_A
“\ r N \\ R [')) R Y_B o
L P B\

Four cameras, covering each 90° of FOV
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The relative orientation problem

* Principle For alarge number of measurements, and
given the assumptions below, using a instead of a yields
a statistically valid estimate of the relative orientation 1.

= Assumptions
— Observations are uniformly distributed in image space
— Observations are made from the same vantage point during revisit



The relative orientation problem

o
a~U(0,21) =0 = —a~U(-f/2, f/2) )
where f is the camera horizontal field of view.

\f/z

Variance 02 = f2/12 (o5 = 26° for f = 90°)

Central limit theorem: for a large number of observations
{cv; }o<i<on, the average of {d;} is normally distributed
with a standard deviation ¢ = o5/v/n (¢ = 2.6° for
n = 100).

0a ~ N(0,0),03 ~ N(0,0) = 6, ~ N(0,20).



a € |0, 2m) is continuous.
& is discrete: & € {aq, -+, a, b
(e.g. & € {=3m/4, —m/4,7/4,31/4}).

v isdiscrete: v € {vi; | & =y, 8= B }o<ij<n-

We represent 4 as a matrix H (match matrix): H = (;;).
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The match matrix

= H(i,]) = user rotation associated to a match btw camera |
and camera |

= H = coarse approximation of the full camera calibration

= His anti-symmetric
H(i,j) = —H(j,1)
» H satisfies the “circular equality”

Z H(i,(i+1) modn)=0 mod 27

0<i<n
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Learning the match matrix

= Training Phase
— Learn match matrix from training data
— Once for a given camera configuration
— Does not depend on training environment

= Training algorithm
— User rotates in place in arbitrary environment
— Algorithm “learns” the match matrix
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Learning the match matrix

Training video sequence
| J
r % T]

S % % feature

H(r,s) < M

User rotates in place n, times in an arbitrary environment (n,=2)

For each pair of frames (f,f) in the training sequence:
Estimate corresponding user rotation 1 (e.g. assuming constant rot. speed)
Compute feature matches between f; and f;
For each match m between a feature on camera r and a feature on camera s, update
H(r,s) with m
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Learning the match matrix

Training video sequence
| J
r % T]

S % % feature

H(r,s) < n

* Training algorithm
= Runs in arbitrary environment
= Done once for a given camera configuration
= Fast (a few minutes) and simple
» Quadratic complexity in # frames and # features/frame



Learning the match matrix

Training Algorithm

User rotates in place in arbitrary environment
Method computes match matrix H

Done only once for a given camera configuration




Rotation guidance using the match matrix

time t timet >t
creation of node v; user at node vj, on the way to v,

o \

H(e,0) —~m
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Rotation guidance using the match matrix
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Loop closure detection

1. Compute node similarity 2. Extract similar sequences 3. Update place graph




Loop closure detection

1. Compute node similarity

= “Bags of words”
word w = (c,, I,)
words store list of node labels

* |ncremental vocabulary
= Optimized search using search tree

v" Fully incremental
v No a priori vocabulary

Filliat, Interactive Learning of Visual Topological Navigation, IROS’08
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Loop closure detection

2. Extract similar sequences

= Smith & Waterman algorithm
» |nspired from molecular biology
= Qutput: similar node subsequences

v Robust loop closure detection
» Does not detect “instantaneous” loop closure

Ho & Newman, Detecting Loop Closure with Scene Sequences, IJCV'07



3. Update place graph

{ = Merge node sequences



Loop closure detection
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Match matrix

» Anti-symmetry: error ~ 14.5°
= Circular equality: error ~ 1.5°

—~19.9  91.3 —164.7 —66.9
—101.8 —11.9 101.4 —151.5

H = 155.1 —95.9 —16.2  105.9
599 1641  —934  —6.7 |
0 90 180 ~ 90
oo T 90 0 90 180 W
° 180 ~ 90 0 90
90 180 ~ 90 0 )
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Potential sources of error

» Constant rotation speed during training

* Non-homogeneous feature distribution in image space
= Baseline due to translation during revisit

= Feature mismatches



Rotation guidance vs IMU

» User rotates in place in arbitrary environment
= Compare rotation guidance against IMU
= Standard deviation: 8.5° (max error: 20°)
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Large-scale rotation baseline

First image Second image (matches in blue) Alighed images

High-resolution camera pointing upward

» Average difference between SIFT feature orientations
Standard error (vs IMU) < 2°

» Ground-truth throughout exploration path

= Requires no intrinsic/extrinsic camera calibration
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Rotation guidance vs ground-truth
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= 200 checkpoints
» Standard error: 10.5° (max error: 15°)
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Real-world explorations

Name Scenario Duration Length  #frames  # nodes # checkpoints
MEZZANINE 10 min. 400m 6,000 91 36
GALLERIA homing 15 min. 700m 9,000 154 150
CORRIDORS point-to-point 30 min.  1,500m 18,000 197 0

GALLERIA

dataset

CORRIDORS dataset




Off-path trajectories (GALLERIA dataset)

‘ Place graph node
o~ Guidance output

O Failure case

Rotation guidance overlaid on 2D map. Values are exact, not notional.




Off-path trajectories (CORRIDORS dataset)




Rotation guidance (CORRIDORS dataset)




Rotation guidance (CORRIDORS dataset)
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First visit Revisit
(SIFT features in yellow) (body-relative rotation guidance)




Loop-closure (CORRIDORS dataset)
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Exploration path manually overlaid on 2D map

Place graph (spring-mass model)
1,500 meters (30 min.)

500 nodes (before loop closure)
197 nodes (after)
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Conclusion

Assumptions

» Large number of visual features visible at all time

» Uniform distribution of observations in image space

» Rigid-body transformation between cameras is fixed but can change slightly
» Training phase (short, once for a camera configuration)

Advantages

v" Requires no extrinsic or intrinsic camera calibration

v Scales to large environments (several km)

v Provides guidance in the user’s body frame

v Robust to off-path trajectories and high-frequency user motion

Future Work

» Extend to 3D motion (stair ascent/descent)
= User study on multiple real human users

= Application to robotics
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Questions

time t time t' >t
creation of node v; user at node v;, on the way to v
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