
Wide-Area Egomotion Estimation from Known 3D Structure

Olivier Koch Seth Teller
koch@csail.mit.edu teller@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory
Stata Center, 32 Vassar Street, Cambridge MA 02139

Abstract

Robust egomotion recovery for extended camera excur-
sions has long been a challenge for machine vision re-
searchers. Existing algorithms handle spatially limited en-
vironments and tend to consume prohibitive computational
resources with increasing excursion time and distance.

We describe an egomotion estimation algorithm that
takes as input a coarse 3D model of an environment, and
an omnidirectional video sequence captured within the en-
vironment, and produces as output a reconstruction of the
camera’s 6-DOF egomotion expressed in the coordinates of
the input model. The principal novelty of our method is a
robust matching algorithm that associates 2D edges from
the video with 3D line segments from the input model.

Our system handles 3-DOF and 6-DOF camera excur-
sions of hundreds of meters within real, cluttered environ-
ments. It uses a novel prior visibility analysis to speed
initialization and dramatically accelerate image-to-model
matching. We demonstrate the method’s operation, and
qualitatively and quantitatively evaluate its performance,
on both synthetic and real image sequences.

1. Introduction
Robust, wide-area egomotion estimation within general

environments is one longstanding goal of computer vi-
sion researchers. Existing vision-based SLAM (Simulta-
neous Localization and Mapping) or SFM (Structure From
Motion) algorithms expend storage and computational re-
sources that grow super-linearly with the sequence length,
and incur growing localization error over time; these meth-
ods typically handle only short-duration, short-excursion
sequences [9, 23].

This paper describes an alternative approach to vision-
based localization which assumes availability of a coarse
3D environmental model before exploration commences,
rather than constructing the model on the fly. We show
that under these circumstances egomotion estimation can
be made sufficiently robust and efficient for real-time use

with extended camera excursions through multiple build-
ings. Quantitatively, our method can recover the 6-DOF
rigid body pose of a camera (attached to a user’s head, body,
or hand-held device) as it is moved within a spatially ex-
tended, visually cluttered environment, with an accuracy of
a 10-25 cm in translation and about two degrees in orienta-
tion. Our algorithm has been tested over dozens of minutes
of walking-speed motion within an interconnected collec-
tion of buildings with many corridors and hundreds of dis-
tinct rooms.

Figure 1. Recovered motion of an omnidirectional camera during
a long excursion (1,500 frames) within an extended cluttered en-
vironment (450 m2). Our method establishes the camera’s initial
location, then tracks the camera as it moves.

Capturing high-fidelity CAD models of existing built en-
vironments is itself a difficult problem, and in some respects
our solution eases one hard problem (egomotion estimation)
by assuming the solution to another (as-built model cap-
ture). Yet we believe that this is a useful tradeoff, for two
reasons. First, 3D CAD models of existing spaces will be-
come more commonly available as GIS and other mapping
efforts extend indoors and users grow to expect the same
map coverage and quality indoors that they currently enjoy
for outdoor spaces and road networks. Second, our method
requires for effective operation only coarse model geome-
try, comprising only major visible building elements, typ-
ically walls, floors, ceilings, doors and windows. In many
cases such models can be generated through automated “ex-

trusion” of 2D floorplans (as is the case with most 3D model
data used in this paper).

We formulate egomotion estimation as an on-line task al-
ternating between two operating phases. The Initialization
phase determines a valid camera pose estimate when the
camera pose is known poorly, either at the start of explo-
ration or after “loss of lock.” Once the Initialization phase
establishes an accurate camera pose estimate for one or
more frames, the Maintenance phase updates camera pose
over subsequent frames. We show how both phases can be
dramatically accelerated through prior Visibility Analysis of
the environment model.

Our system makes four significant assumptions. First,
we assume that a coarse polyhedral model of the environ-
ment – which we define as including, at a minimum, walls,
floors, ceilings, doors and windows – is supplied as input.
Such a model could be provided by the building’s architects,
or produced independently by a post-construction model-
ing method. However it is acquired, we extract 3D model
“segments” from the boundaries of each polygon in the in-
put model. Second, we assume that the camera is intrinsi-
cally calibrated. Third, we assume that camera motion is
smooth, i.e. that sensor-dependent linear and rotational ve-
locity bounds are not exceeded. Finally, we assume that the
camera never moves through any impenetrable, opaque sur-
face, and consequently can never observe the back side of
any polygon in the input model.

We emphasize that we do not make a number of other
assumptions found in other vision-based localization sys-
tems. For example, we do not assume the presence of verti-
cal and horizontal model edges [8], right angles [3], or van-
ishing points [6]. We do not assume knowledge of surface
color or reflectance attributes in the environment, or indeed
of any “appearance” information other than knowledge of
the geometric model itself. Finally, though we do assume
that the portions of the environment represented by the pro-
vided model are static, we do not assume a static world. In
particular, our method handles time-varying lighting, time-
varying clutter (e.g. furniture), and transient image motion
(caused e.g. by passers-by).

2. Related Work

The theoretical background of vision-based localization
is presented in two seminal books [16, 12] and a more recent
survey of multi-view geometry [15].

Three line correspondences are sufficient in theory to
recover 6-DOF camera pose [10] though in practice more
lines may be required [21, 1]. Point features and RANSAC
may be combined [19] to achieve robust real-time local-
ization. In general, standard methods operate by track-
ing point, edge, or contour features between consecutive
frames [18, 11, 14], and minimizing some error function.

Other researchers have combined point-based and segment-
based tracking methods for increased robustness [22].

Alternatively, the geometry of the environment may be
reconstructed explicitly [24], with an optimization based on
Plücker coordinates allowing the removal of superfluous de-
grees of freedom [4, 5]. Our method requires no training
phase (as in [20]), no artifical landmarks (as in [17]) and
one omnidirectional camera (rather than two as in [7]).

3. Contributions
Our method differs from existing work in four respects.

First, it uses omnidirectional images in order to support
full view freedom (e.g., close proximity to environment sur-
faces), and to remove pointing constraints from the camera
operator. Second, the method scales to large, real-world
environments (see section 5). Third, the method includes
an automated initialization capability which runs more effi-
ciently when the user provides a “hint” about the camera’s
location. Finally, the method is robust to significant clutter,
lighting variations, and transient motion.

4. Egomotion Estimation Method
Our method consists of matching detected 2D image

edges to known 3D model segments, without performing
structure-from-motion. We chose to base our egomotion
estimation on line tracking, rather than point tracking, both
because this approach seemed relatively unexplored in the
vision literature, and because intuitively we expected long
model segments to be robustly detectable and precisely lo-
calizable even in the presence of severe clutter.

Given a set of correspondences between image edges and
model segments, we recover the camera pose by minimizing
an error function ξ, defined as the normalized square sum of
angular disparities for each correspondence between image
edge and (reprojected) model segment (Figure 2):

ξ(R, T) =
1
n
·

n∑
i=1

α(ei, R, T, li)2 (1)

where R and T are the rotation and translation components
of the camera’s rigid-body pose respectively, n is the num-
ber of correspondences, and α is the angle between the two
planes spanned by the camera center and the observed im-
age edge ei and model segment li respectively.

4.1. Initialization

Initializing the camera pose requires determination of an
initial set of valid correspondences between image edges
and model segments. Rather than incur the geometric com-
plexity of performing SFM from two or more images, then
matching recovered to known 3D structure, we initialize
from a single omnidirectional image. This simplifies the

Figure 2. The angle α between image edge ei and model segment
li as seen by camera (R,T) is defined as the angle between the
normals to the planes generated by the camera center and ei and li
respectively.

geometric computation required to a simple projection of
model segments through our (known) camera model. The
core idea of the initialization algorithm is to find the camera
pose (R0, T0) that minimizes ξ. Neither exhaustive search
of the 6-DOF space of poses, nor naive RANSAC [13],
are tractable approaches when most model features are oc-
cluded. Instead, we search within a volume (center T̃ , di-
ameter δ) known to contain the camera position, and iden-
tify the 6-DOF camera pose within this volume that mini-
mizes ξ. The time required for Initialization is proportional
to the size of the search volume.

4.1.1 Model Coordinate Subdivision

The initialization algorithm uses a visibility data structure
(described in § 4.3). This data structure consists of a dis-
cretization of the 3-DOF model space into nodes at a spac-
ing of about one meter. Each node is associated with a vol-
umetric cell containing all points closer to that node than to
any other node (each cell is indeed the Voronoi region of
one node, but the cell boundary is known by construction,
rather than computed from the arrangement of node posi-
tions). The initialization algorithm is invoked with a spec-
ified search region. It identifies which cells intersect this
region, and searches these cells for the camera pose with
lowest ξ score.

4.1.2 Edge-Segment Matching

The core of the initialization algorithm is a method for gen-
erating and scoring putative correspondences between ele-
ments of two sets, m image edges E and n model segments
L, and using a selected subset of correspondences to recover
camera pose. The method is based on the following obser-
vation: that a pair of image edges is a compatible match
with a pair of model segments only if the dihedral angles
formed by the two associated plane pairs differ by less than
some bound determined by the inter-node distance. Using
this observation, we define a function that takes as inputs
a triplet of image edges and a triplet of model segments

and returns a match score for the pairing of these triplets.
The scoring function is defined as the normalized product
of overlaps between the dihedral angle ranges taken over
the cell interior. Given a set of image edges and a set of
model segments, the algorithm computes the match score
for each triplet of edges and segments and aggregates them
within an m × n table.

The table also stores the k best candidate matches for
each active model segment (we use k = 3). The initial-
ization method next performs a series of random samplings
pairing a model segment with one of its best-matching im-
age edges. From each sample match set, the camera pose
and resulting ξ value are computed; the algorithm returns
the camera pose with the lowest ξ value. Figures 3 and 4
illustrate the algorithm.

li

lj
lk

er
et es

model segments

im
ag

e
ed

ge
s i j k

r

s

t

Figure 3. Edge-segment matching based on dihedral angle con-
straints. When a segment triplet {li, lj , lk} is compatible with an
edge triplet {er, es, et}, the scoring table is updated accordingly.

1: Given (T̃ , E ,L, δ)
2: Initialize a m × n score table: A = 0
3: for each triplet {li, lj , lk} ∈ L3 (0 ≤ i < j < k < n)

and each triplet {er, es, et} ∈ E3 (0 ≤ r < s < t < m)
do

4: Compute min, max dihedral angles for {li, lj , lk} and
dihedral angles for {er, es, et}

5: if dihedral angles match then
6: Compute the overlap α between observed and ex-

pected dihedral angles
7: Update: A[r][i]+= α; A[s][j]+= α; A[t][k]+= α
8: for each row Aj , 0 ≤ j < n do
9: Determine top k elements {Aj

i1
, · · · , Aj

ik
}

10: Generate multi-hypothesis correspondence
cj = {lj | ei1 , · · · , eik

}
11: Draw random correspondence match set:
12: for each sample {cj1 , · · · , cjp} do
13: Select a random edge match for each cjk

.
14: Minimize the ξ function over the sample.
15: Return solution (R0, T0,S0) with lowest ξ value.

Figure 4. The INIT-SEGMENT-EDGE Algorithm.

4.1.3 System Initialization

In practice, the system runs INIT-SEGMENT-EDGE given
a coarse user bound around the camera position, and returns
the solution with the lowest ξ value. For more robustness,
the algorithm is followed by a standard simplex minimiza-
tion of ξ. Figure 5 summarizes the Initialization phase.

1: Given (T̃ , δ)
2: Detect edges on the first frame → E
3: Determine the set of visible model segments L =

VIS(T)
4: Run INIT-SEGMENT-EDGE on (T̃ , E ,L, δ).
5: Keep the solution with the lowest ξ(R, T) value.
6: Return the corresponding solution (R0, T0,S0).

Figure 5. Initialization.

4.2. Maintenance

This section describes the algorithm’s maintenance com-
ponent. Given a set of edge-segment correspondences St at
frame t, the maintenance problem is to identify a set of cor-
respondences St+1 at frame t + 1 and to compute the new
camera pose (Rt+1, Tt+1). To account for clutter, we use
a multi-hypothesis approach combined with a color-based
inter-frame constraint.

4.2.1 Hue-based Edge Matching Constraint

Each image edge is associated with a hue mean and vari-
ance for two five-pixel wide regions, one on each side of
the edge. Given a correspondence between an image edge
and a model segment in frame t, the algorithm looks for
matching edges in frame t+1 by considering all edges with
a dihedral angle smaller than a given threshold (we use 10
degrees) and a hue distance smaller than a given threshold
(we use 0.03 in a wrapped hue space [0..1]). We mark a
correspondence observed if it satisfies these two criteria.

4.2.2 Motion Smoothness Assumption

Our system relies on the motion smoothness assumption in
two ways. First, it uses a local visibility computation to
determine the expected model segments in the next frame,
given the camera position at the current frame (see § 4.3).
Second, the hue-based filter described in § 4.2.1 incorpo-
rates a maximum angle threshold between two consecutive
observations of a model segment on the image. Given a cor-
respondence between an image edge and a model segment
at frame t, only those image edges that fall within the angle
threshold at frame t + 1 are candidates for the correspon-
dence update (Figure 6).

frame t frame t frame t + 1 frame t + 1

angular test

color test

li

ejt ejt+1

li

Figure 6. Correspondence update. Given a correspondence be-
tween the 2D image edge et

j and the 3D model segment li at frame
t, the angular and hue constraints determine the most likely edge
match et+1

j at frame t + 1.

4.2.3 Correspondence Subsets

After correspondence update, the system generates a series
of random correspondence subsets. For each subset, the al-
gorithm refines the camera pose (using the position at frame
t for the initial guess), finds the inlier matches, refines again
and finally computes the ξ function over the set of remain-
ing correspondences. The pose with minimum ξ value is
retained. This procedure tends to identify a consensus set
of correspondences.

4.2.4 Correspondence Lifetimes

In order to further improve the robustness of the matching
process, we implement a basic state machine for correspon-
dences. The machine has three states: an entry state un-
known, and two subsequent states pending and accepted.
A correspondence status evolves to pending once it is ob-
served, and to accepted if it is consistently observed over k
consecutive frames (we use k = 4). A correspondence sta-
tus degrades from accepted to pending if it is unobserved
for at least one but no more than k − 1 frames, after which
it either evolves to accepted or (when the edge has been
unobserved in k consecutive frames) degrades to unknown.
The color signature of an edge is retained as long as it is
accepted or pending. However, only correspondences with
accepted status are used for egomotion estimation. Figure 7
summarizes the Maintenance Algorithm.

The number of correspondences per sample λ is defined
by the minimum number of correct correspondences re-
quired to accurately determine the camera pose. In theory,
three correspondences are sufficient (omitting degenerate
configurations). In practice, approximately 10 correspon-
dences are needed to account for image and model noise
(see § 5.1). The number of samples st is defined as the min-
imum number of draws of p out of q elements required to
achieve 95% odds of success assuming the set has b% out-
liers, i.e. the minimum p such that :

(1 −
(

(1 − b
100)q
p

)
/

(
q

p

)
)n ≤ 5% (2)

Table 1 evaluates st for different values of b and |S̄t|.

|S̄t| = 30 40 50 60
b = 10% 10 9 9 8
b = 30% 254 193 167 152
b = 50% 29971 13743 9413 7516

Table 1. Number of samples versus clutter percentage (b) and num-
ber of correspondences (|S̄t|).

1: Given (Rt, Tt,St)
2: Detect edges at frame t + 1 → E
3: for each correspondence {li, ej} in St do
4: Search for match in E satisfying color consistency

with ej and acceptable angular error with li.
5: If a match is found, update the correspondence.
6: From the set S̄t of correspondences with accepted sta-

tus, draw st samples of λ correspondences (λ � |S̄t|).
7: for each sample do
8: Compute camera pose by minimizing ξ over the λ

correspondences using a simplex method.
9: Score sample by computing ξ over the remaining cor-

respondences in S̄t.
10: Keep sample with lowest score; update camera pose at

frame t + 1.
11: Update each correspondence in St according to the

state machine → St+1.
12: Query new visibility set Lt+1 = VIS(Tt+1)
13: If Lt+1 �= Lt, remove demoted segments and insert

new segments with status unknown in St+1.

Figure 7. The Maintenance Algorithm

UNKNOWN

PENDING

ACCEPTED

{observed}

{not observed}
{observed for
> k consecutive
frames}{not observed for

> k frames}

Figure 8. Correspondence state machine.

4.3. Prior Visibility Analysis

In order for the system to scale well, an off-line process
computes the set of visible model segments from each node
in the 3D model. The data is stored in a lookup table and is
queried during both Initialization and Maintenance, greatly
reducing the number of candidate model segments that must
be processed. The resulting look-up table accepts as input

a 3D position T in the model and returns an estimate of the
set of visible faces, segments and vertices (F ,L,V):

(F ,L,V) = VIS(T) (3)

The visibility analysis is not conservative in a sense that
it does not generate a superset of the edges visible to any
point in the cell. However, given a sufficiently fine-grained
sampling of the view space, even an underestimated visi-
bility set will contain most prominent environment edges
observed by the camera.

We use an OpenGL algorithm based on powerful modern
GPUs (Graphics Processing Units) to perform the visibility
analysis efficiently. First, the set of visible faces is com-
puted by rendering the 3D model with a virtual camera cen-
tered at each node position, with each model face assigned
a unique color. The contents of the framebuffer then corre-
spond to the set of faces visible (at pixel resolution) from
the node.

Second, we consider the set of model segments bounding
at least one visible face. Each associated model segment is
rendered through both the OpenGL feedback buffer and the
OpenGL depth buffer (Figure 9). The feedback buffer con-
tains the depth value at each pixel along the segment if the
segment were to be displayed alone. The depth buffer con-
tains the depth value at each pixel along the segment when
rendering the full model. If the depth buffer value is equal
to the feedback buffer value for at least two pixels along the
segment (up to framebuffer precision), the segment is clas-
sified as visible. On the other hand, if the depth values differ
at all pixels along the segment, the segment is classified as
occluded by some model polygon. Figure 9 illustrates our
algorithm.

Z-buffer

Feedback buffer

Camera

Figure 9. Visible segment determination using OpenGL and GPU.

5. Results
We demonstrate our system on one synthetic and three

real image sequences:

• SYNTHETIC: 6-DOF motion within a simulated lab
space;

• LAB: rolling 3-DOF (x, y, θ) motion within a real lab
space;

• CORRIDOR: rolling 3-DOF motion through adjoining
buildings; and

• HAND-HELD: hand-held 6-DOF motion within a real
lab space.

Table 2 summarizes various attributes of the test sequences.

lab corridor hand-held
Number of frames 1,500 7,800 1,900
Frame rate (s−1) 5 5 15

Excursion duration (min) 5 26 2
Excursion length (m) 120 936 33

Total # of 3D segments 3,000 7,400 3,000
Total surface area (m2) 450 7,000 450

Table 2. Test sequence information.

Figure 1 shows the recovered camera motion for the LAB
sequence. The initial camera pose was computed automat-
ically using our initialization algorithm. Figure 12 shows
an omnidirectional image and the re-projected 3D structure
overlaid in green; note the high level of clutter and occlu-
sion. Figure 10 shows the recovered motion for the CORRI-
DOR sequence. The 3D model was generated automatically
from publically available 2D blueprints using a standard
height for ceilings and door frames. Figure 11 shows the
recovered egomotion for the HAND-HELD sequence. Fig-
ure 13 shows a detail view of long-range correspondence
tracking over several hundred frames. Figure 14 shows the
correspondence state for a 3D model segment being oc-
cluded during the sequence.

5.1. Localization Accuracy

Figure 15 shows the localization error (translation and
rotation) for the SYNTHETIC sequence. We simulate im-
age noise by convolving image edges with gaussian noise
(σ = .5 deg), and simulate clutter by removing 25% of the
correspondences and adding gaussian noise of (σ = 2 deg)
to the remaining correspondences. Figure 16 shows the
error in recovered position and orientation with respect to
ground truth. The ground truth for position was obtained
using a flat 2D motion for the camera and comparing the po-
sition component computed by the system along the z axis
with the actual camera height measured with a laser range
finder. The ground truth for rotation was obtained using
an Xsens MTi gyro attached to the camera. The standard
deviation is about 13 cm in position and two degrees in ori-
entation.

5.2. Camera Calibration

The system uses the PointGrey Research Ladybug cam-
era. The camera is composed of six CCD sensors covering

Figure 10. Recovered egomotion for CORRIDOR sequence (7,800
frames). Note motion into and out of adjoining offices. The 3D
model was generated automatically from 2D blueprints and extru-
sion heights.

Figure 11. Recovered egomotion for HAND-HELD sequence (1,900
frames). Our system handles truly 6-DOF camera motion.

Figure 12. Omnidirectional image and re-projected 3D structure
(in green). Localization is fairly accurate despite severe clutter. A
video of this sequence is provided as supplemental material.

more than 75% of the view sphere. The rigid-body transfor-
mation between each sensor and the virtual camera frame is
provided by PointGrey Research. Due to their small focal
length, the sensors are subject to high distortion. We cal-
ibrate each sensor independently using an ellipsoidal lens
model [2].

Figure 13. Top and bottom row: long-range correspondence track-
ing over several hundred frames (LAB sequence). Note recovery
after occlusion (top row).

Frame number

ACCEPTED

UNKNOWN

PENDING

0 50 100 150 200 250 300 350 400

Figure 14. Correspondence state for a 3D segment being occluded
from frame 240 to 350. The algorithm automatically detects the
start and end of occlusion and maintains the correspondence state
accordingly.

20 30 40 50 60
0

2

4

6

8

10

12

14
noise and clutter
clutter only
noise only
zero noise

20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
an

sl
at

io
n

Er
ro

r (
cm

)

R
ot

at
io

n
Er

ro
r (

de
gr

ee
s)

Number of correspondences

Figure 15. Localization accuracy with respect to the number of
correspondences (simulated data, Gaussian noise on image edges
σ = 2deg). Accuracy plateaus at about 40 correspondences.

5.3. Initialization

Figure 12 shows the result of Initialization on
a real image using a search volume three meters
wide. Figure 17 shows a correspondence generated by
INIT-SEGMENT-EDGE. The model segment is shown in
red. The three putative correspondences are shown on the
image in blue and white. The algorithm succeeds in finding
the correct match despite the high level of clutter.

6 4 2 0 2 4 60

5

10

15

20

25

40 30 20 10 0 10 20 300

5

10

15

20

25

30

Translation Error (cm)

µ = 0.04 cm
σ = 13.2 cm

Rotation Error (deg)

µ = 0.96 deg
σ = 2.16 deg

H
ist

og
ra

m
 v

alu
e

Figure 16. Position and orientation accuracy with respect to
ground truth. (Gaussian fit shown as red dashed line).

Figure 17. Putative correspondence determined by
INIT-SEGMENT-EDGE. The algorithm determines the
highest-scoring matches for the model segment (in red on the left)
among the observed image edges. The three best candidates are
displayed on the right. The correct match appears in blue on the
left-hand side.

5.4. System Performance

The system currently runs at about 1Hz on a desktop
PC with four 2GHz CPUs. Two thirds of the processing
time are spent in edge detection and color processing (six
512 × 384, 8-bit images). The remaining time is spent in
the random sample algorithm. The initialization phase takes
one minute given a three-meter search volume. We have
implemented an optimization for the special case of vertical
camera pose which runs in about 10 seconds.

6. Discussion

This section discusses several limitations of the current
method, and possible directions for its future development.

6.1. System Limitations

The system suffers from the following limitations. First,
the method’s performance could be improved, through more
focused sampling, through code optimization, or with faster
hardware. Second, the system’s localization accuracy could
be higher. Some error is surely due to feature localization;
another error source is inaccuracy in the input 3D model.
Third, the present sensor is not light-sensitive enough; it re-
quires slow, smooth motion in order to avoid motion blur in
indoor environments. Fourth, the initialization method can
give ambiguous results in the presence of repeated environ-
ment structures such as multiple doorways along extended
corridors. Finally, the visibility analysis assumes that a one-
meter grid is fine enough to capture most variations in visi-
bility.

6.2. Future Directions

We are currently pursuing several promising directions.
First, a geometric signature-based initialization could en-
able the method to quickly eliminate inconsistent locations
and cut down the number of regions in which to run the ini-
tialization algorithm. Second, integration of an inertial sen-
sor and a camera motion model could increase the robust-
ness of the maintenance phase. Third, we will investigate
tracking of 3D points in addition to 3D segments. Finally,
an on-line update of the model combined with occlusion
processing could further decrease the occurrence of false
matches.

7. Conclusion

We described an algorithm for 6-DOF localization from
a coarse 3D model and an omnidirectional video sequence,
based on establishing and maintaining matches between im-
age edges and model segments. Our system makes few as-
sumptions about the environment other than that it contains
prominent straight line segments. Our solution algorithm
employed two phases, initialization and maintenance, along
with prior visibility analysis to drastically decrease running
time and increase the scale of environments that can be han-
dled by the method. We demonstrated the system, and eval-
uated its performance, on a variety of long-duration, spa-
tially extended, visually cluttered image sequences.

Acknowledgements

We gratefully acknowledge the support of Draper Labo-
ratory’s University Independent Research and Development
Program.

References
[1] A. Ansar and K. Daniilidis. Linear pose estimation from

points or lines. In Proc. ECCV, volume 4, pages 282–296,
New York, May 2002.

[2] M. Antone. An ellipsoidal lens model for fisheye calibration.
Technical Report TR-1940, BAE Systems Advanced Informa-
tion Technologies, Computer Vision Group, Nov. 2005.

[3] M. Antone and S. Teller. Scalable extrinsic calibration of
omnidirectional image networks. IJCV, 49(2-3):143–174,
2002.

[4] A. Bartoli, R. Hartley, and F. Kahl. Motion from 3D line
correspondences: Linear and non-linear solutions. In Proc.
IEEE CVPR, pages 477–484, Madison, WI, June 2003.

[5] A. Bartoli and P. Sturm. Structure from motion using lines:
Representation, triangulation and bundle adjustment. CVIU,
100(3):416–441, Dec. 2005.

[6] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and
S. Teller. An Atlas framework for scalable mapping. In Proc.
ICRA, pages 1899–1906, Taipei, Taiwan, 2003.

[7] A. Clerentin, L. Delahoche, C. Pegard, and E. B. Gracsy. A
localization method based on two omnidirectional perception
systems cooperation. Proc. ICRA, 2:1219–1224, April 2000.

[8] S. Coorg and S. Teller. Matching and pose refinement with
camera pose estimates. Technical Report MIT/LCS/TM-561,
MIT, 1996.

[9] A. J. Davison. Real-time simultaneous localisation and map-
ping with a single camera. In ICCV ’03: Proceedings of the
Ninth IEEE International Conference on Computer Vision,
page 1403, Washington, DC, USA, 2003. IEEE Computer
Society.

[10] M. Dhome, M. Richetin, and J.-T. Lapreste. Determination
of the attitude of 3D objects from a single perspective view.
IEEE Trans. PAMI, 11(12):1265–1278, 1989.

[11] T. Drummond and R. Cipolla. Real-time visual tracking
of complex structures. IEEE Trans. PAMI, 24(7):932–946,
2002.

[12] O. Faugeras, Q.-T. Luong, and T. Papadopoulou. The Geom-
etry of Multiple Images: The Laws That Govern The Forma-
tion of Images of A Scene and Some of Their Applications.
MIT Press, Cambridge, MA, USA, 2001.

[13] M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image anal-
ysis and automated cartography. Commun. ACM, 24(6):381–
395, 1981.

[14] V. Gouet and B. Lameyre. SAP: A robust approach to track
objects in video streams with snakes and points. British Ma-
chine Vision Conference (BMVC’04), 2004.

[15] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision (2nd ed.). Cambridge University Press,
ISBN: 0521540518, 2004.

[16] B. K. P. Horn. Robot vision. MIT Press, Cambridge, MA,
USA, 1986.

[17] G. Jang, S. Kim, J. Kim, and I. Kweon. Metric localization
using a single artificial landmark for indoor mobile robots.
IEEE Intl. Conf. on Intelligent Robots and Systems, pages
2857–2862, August 2005.

[18] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau.
Robust real-time visual tracking using a 2D-3D model-based
approach. In Proc. IEEE ICCV, pages 262–268, Sep. 1999.

[19] D. Nister. An efficient solution to the five-point relative pose
problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(6):756–777, 2004.

[20] L. Paletta, S. Frintrop, and J. Hertzberg. Robust localization
using context in omnidirectional imaging. Proc. IEEE ICRA,
2:2072–2077, May 2001.

[21] L. Quan and Z.-D. Lan. Linear n-point camera pose determi-
nation. IEEE Trans. PAMI, 21(8):774–780, 1999.

[22] E. Rosten and T. Drummond. Fusing points and lines for
high performance tracking. In IEEE ICCV, volume 2, pages
1508–1515, Beijing, China, 2005.

[23] R. Sim, P. Elinas, M. Griffin, A. Shyr, and J. Little. De-
sign and analysis of a framework for real-time vision-based
SLAM using Rao-Blackwellised particle filters. In Proc.
CRV, pages 21–21, 2006.

[24] C. J. Taylor and D. J. Kriegman. Structure and motion
from line segments in multiple images. IEEE Trans. PAMI,
17(11):1021–1032, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

