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Abstract

Extract from the Cit y ScanningProject Web Site (available at [1]):
\The "computer vision" or "machine vision" problem is a long-standing, di�cult problem.
Fundamentally, it is: how cana computer algorithm, aloneor in concertwith a human, produce
a useful computational representation of a scene,given oneor more imagesof that scene?Un-
til now, whether automated or human-assisted,no acquisition system has beendemonstrated
to scaleto spatially extended, complex environments, under uncontrolled lighting conditions
(i.e., outdoors) and in the presenceof severe clutter and occlusion. Given imagesof an urban
environment, we wish to produce a textured geometric CAD model of the structures in that
environment. This model should include geometricrepresentations of each structure and struc-
tural feature present, and radiometric information about the components of each such entit y
(e.g., a texture map or bi-directional re
ectance distribution function for each surface). One
might think of each image as a 2D "observation" of the world; we wish to produce a single,
textured 3D CAD model which is consistent with the totalit y of our observations. Moreover,
we wish to achieve a model accurate to a few centimeters, over thousandsof squaremeters of
ground area. Several processesare very time-consuming. Reconstruction of the buildings can
take several hours on a MIPS 1000processor.The purposeof our work therefore is to map the
algorithmic components of the Cit y ScanningProject onto a cluster of 32 Linux machines."

The �rst sectiongivesa short overview of the Cit y ScanningProject. We then present our
work on code validation and parallel algorithms. In sections4 and 5, we describe our work on
camera posere�nement, as well as several ideas which have been proposedduring our stay.
Last section contains a short description of the MIT Computer Graphics Group.

Comment une machine peut-elle, seule ou aid�ee d'un op�erateur humain, concevoir la
repr�esentation d'une sc�ene �a partir de photographies? De cette question est n�e le Cit y Scan-
ning Project, dirig�e par le professeurSeth Teller, Computer Graphics Group, Massachusetts
Institute of Technology. �A partir de photographies calibr�eesprises dans un environnement
urbain, le projet a pour but de reconstruire un mod�ele en trois dimensions de cet environ-
nement. Le mod�ele comprend une repr�esentation g�eometrique ainsi que des informations sur
la texture et l' �eclairement desobjets. En consid�erant chaque imagecommeune "observation"
de l'environnement, le mod�ele �nal doit être conforme �a l'ensemble de cesobservations. La
pr�ecision du mod�ele est de l'ordre de quelquescentim �etres pour une surface d'environ cent
m�etres carr�es.

Le projet est constitu�e de nombreux algorithmes dont certains sont tr �escôuteux en temps
de calcul. La reconstruction g�eometrique,par exemple,peut durer sept heuressur unemachine
Silicon Graphics 02 monoprocesseur. Le but principal de mon projet est de parall�eliser ces
calculs sur les di� �erents clusters du groupe.

Dans un premier temps, nous d�ecrivons le projet de mani�ere globale, pour pr�esenter dans
un deuxi�eme temps nos travaux sur la validation du code et le calcul parall�ele. Ce document
�evoque ensuite les travaux annexesqui ont �et�e e�ectu �es ainsi que des id�ees propos�ees en
cours d'ouvrage. Le lecteur curieux trouvera en derni�ere partie des informations sur le MIT
Computer Graphics Group.
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1 In tro duction to the Cit y Scanning Pro ject

1.1 Theory : why is it lik ely to work ?

In this section,we present somevery basic geometric ideas. The question is the following : what
makes us believe that a set of camerasis su�cien t to give a complete description of a 3D envi-
ronment ? After all, a camerahas a 2D representation of the world. How is it possiblethat a
combination of thesecamerascan createa relevant 3D world ? In fact, a �nite set of camerawill
never be able to represent any environment. For many reasons,the situation can be ambiguous,so
that the computersystemcannot give a completesolution to the problem. For example,if there are
too many trees, somepart of the buildings might be occluded to the cameras,and then never be
detected. However, this is not exactly the point of the project. The aim of the systemis to create
a 3D environment which is relevant with all the observations. The question is not : is this world
true or not ? The question is : is it relevant or not ? Now, if we considerthat we have enough
observations, this world will be unique, and the relevant world will correspond to te real world,
which is not obvious in fact. Thus, given the assumptionthat the systemis intelligent enoughto
put the camerain the right positions, and a su�cien t number of times, we can considerthat our
systemwill be able to represent the surroundingurban environment. Let us now considera camera.
It hasa 2D representation of the world, which meansthat the information provided by this camera
is not su�cien t to reconstruct the 3-dimensionscene.However, if we usethe right projection, and
get rid of the problem of distorsion, a line in the 3D world will be represented by a line on the
cameraplane. Thus, the camerawill be able to detect the lines in our world. At that point, we
needa geometricaltheorem,which is quite simple in fact ([8]):

Theorem 1.1 Given the position of the camera in the 3D world, the direction of a 3D-horizontal
edgeis completelydetermined by the image-space 2D line of its projection.

Figure 1 illustrates this idea. Let us give a short proof of the theorem. Let us put C the center of
the camera,and B and E the endpoints of the edgeon the imageplane. C, B and E de�ne a unique
plane in the 3D world. Let us call D the intersectionof this plane with any horizontal plane. Than
D is the direction of the 3D-horizontal edge. Indeed, the 3D edgebelongsto plane (B,C,E) and is
parallel to any horizontal plane sinceit is horizontal.

Figure 1: Deducing tile azimuth from a horizontal line segment

Why is this theorem so interesting for the City ScanningProject ? Let us considera set of
camerastaking pictures of the environment and a 3D horizontal edge.Let us assumethat this edge
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is observedby at least two cameras.According to the last theorem,each cameraknowsthe direction
of the edge. If the camerasare "well positioned" in respect with the 3D edge,the edgebelongs
to the intersection of two planes,as shown on �gure 2. Thus, using a spacesweep technique, the
position of the edgeis completelydetermined. Using this method for all the edges,it is possibleto
determine all the positions of the edgesin the 3D world, and then to reconstruct all the vertical
facades,which is an important step in the project. Indeed, vertical facadesoccur frequently in
urban environments.

Figure 2: Deducingedgeposition from multiple observation

As we said, this is a "p erfect" situation. In the real life, many aspectsmake the problem more
di�cult, and two camerasare unsu�cien t to detect an edge. The experiencetends to prove that,
in the caseof the City ScanningProject, at least six camerasare necessary. This is mostly due to
the fact that the systemis fully automated, which meansthat there is no human operator to help
the computer go through ambiguoussituations.

1.2 Georeferenced imagery

To observe the urban environment from many angles,the City ScanningProject usesArgus. The
device,developed by a team at the MIT Computer Graphics Group, combinesnavigation sensors,
a high-resolutiondigital camera,and variousalgorithms to capture georeferencedimagery of urban
environments ([3]).
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1.2.1 Camera

Figure 3: The eye of Argus

The pose-camerais a wheelchair-sized mobile platform

with a high-resolution color digital camera mounted on a

pan-tilt head, which is itself mounted on a vertically tele-

scopingstalk. The platform also includes instrumentation

to maintain estimatesof global positioning (GPS), heading

information (IMU), and dead-reckoning (optical encoders

on the wheels), all in absolute coordinates (for example,

Earth coordinates). Finally, an on-board power source

and PC provide power and control to all of the devices,and

disk and tape drivesstore digital imageand pose(position,

heading, time) data. Each picture taken by the camera is

annotated with information such as : date, GPS position,

and cameraintrinsic parameters(focale,aperture,...). The

camerais deployed in the urban area. The human operator

choosesthe positions or "nodes" from which imagesare to

be acquired,at a spacingof roughly every 10meters,main-

taining a stando� of 10-15meters from each building. The

pose-cameraacquiresa sphericalmosaicimagecentered at

the node, and annotates it with the on-board instrumenta-

tion's estimatesof latitude, longitude, and altitude of the

camera,heading information, and the date and time, and

stores the resulting "p ose-image."

1.2.2 Images

The acquisition of imagesand structure of the dataset is fully described in [4]. Figure 4 shows the
tiling pattern we use(typically, 47 or 71 images).Why 47 or 71 images?Around the equator, and
at 20 and 40 degreesNorth, we take twelve imagesspaced30 degreesapart. At 60 degreesNorth,
we take nine images(spaced40 degreesapart); at 80 degreesNorth, only two images(180 degrees
apart). The total is then 12 + 12 + 12 + 9 + 2 = 47 images.Sometimes,nodesare taken from high
above ground (e.g., from a nearby building roof, or parking garagetop level). Thesenodeshave two
extra "rings" of twelve images,at 20 and 40 degreesSouth, for a total of 47 + 12 + 12 = 71 images.
Note that our "tiling" schemeproducesoverlapping images;this is necessaryfor the correlation-
basedalignment stageto producesphericalmosaics(below). Each "tile" of the mosaicis a high-res
(1K by 1.5K by 24-bit) digital imageasshown on �gure 5. Figure 6 shows what the imageslook like
from a �xed optical center as the camerais rotated about it. Figure 6 also shows the raw images
(47 images,1K x 1.5K x 24 bits each) comprisingonenode acquiredat ground level.

The next step is align each of the imagesto form a seamlessspherical mosaic. We do so by
associating a quaternion with each image,then performing numerical optimization to best correlate
overlapping regions of neighboring images. Several views of one resulting spherical mosaic are
represented on �gure 7. For easeof processing,we usea "spherical coordinate" representation of
thesemosaics.We coalesceeach mosaicinto a rectangular pixel array whosehorizontal coordinate
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Figure 4: Imagery tiling pattern Figure 5: High-resdigital image

Figure 6: Left : view from the cameraoptical center. Right : combining raw images- Tech Square
is visible at left; Draper Labs at right.

correspondsto phi (azimuth, from 0 to 360degrees),and whosevertical coordinate correspondsto
theta (altitude, from -90 to +90 degrees).Figures 8 and 9 show such "spherical" images,(again)
composited from 47 sourceimages.

Each sphericalmosaicrepresents roughly 1012x 1524pixels/image x 47 images,or just under
75 million pixels. Thus, a squaretexture representing the mosaicwould have a resolution of about
8,500x 8,500pixels. For technical reasons(basically, so the mosaicscan serve well as texture maps
inside OpenGL), both their horizontal and vertical dimensionsmust be powersof two. The closest
matching powers of two which produce reasonableaspect ratios (remember, a hemisphereis 360
degreesof azimuth and 90 degreesof altitude) are 8,192x 4,096pixels. The mosaicspictured above
are decimated; they have a resolution of 512 x 256 pixels, or 1/16th x 1/32nd = 1/512th of the
information of the full-scalemosaics! We have alsousedthe Argus and its mosaicingalgorithm to
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Figure 7: Several viewsof a sphericalmosaic

Figure 8: Mosaicsphericalcoordinate representation - X axis : azimuth; Y-axis : altitude

acquire sometruly high-resolution (say, 8 gigapixel = 128K x 64K) mosaicsof interesting interior
spacesaroundMIT, such asLobby 7. Producingsphericalmosaicsyieldstwo signi�cant advantages.
First, we can treat the mosaicsasrigid, "virtual" imageswith an e�ective �eld of view much higher
than that of a raw image. In ensuingoptimizations, this rigid virtual imagecan be manipulated as
oneentit y { reducing, by more than a factor of �ft y, the number of free variablesto be optimized.
Second,the wide e�ective �eld of view allows much more robust estimation of vanishingpoints and
translation direction than doesa single image. (In typical "frame" images,there is a fundamental
ambiguity betweensmall rotations and small translations. This ambiguity doesnot occur for super-
hemisphericalimages).
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Figure 9: Another imagetaken at twilight

1.3 The pip eline

This sectionpresents an overview of the City ScanningProject pipeline. The systemis composed
of a set of programs- each one being attributed to a very speci�c task. Figure 10 represents the
wholepipeline for 3D-geometryreconstruction. This pipeline itself is included in a completesystem
including sensordeployement as well as visualization and simulation applications. Here are some
details about each step :

� undistort : the camera focale length may vary between 20 and 28 mm, which meansthat
it is an "abnormal" lens - 50 mm is a typical normal length. This meansthat the image is
distorted : lines get curved. To remove this distorsion, we use a program called undistort
which usesthe camerasintrinsic parametersto undistort the images.

� Mosaicing: in this step, we convert the set of raw imagesinto spherical images,as described
in the precedent section. Also, mosaicing is used to re�ne camera intrinsic parametersby
rotating and translating the cameraposition. This step is very important, insofar as bad
camerapositions can lead to a bad edgecorrelation.

� Edge detection : as described in section 1.4.1, the edgesare detected in the cubical images.
Theseedgesare usedin the next step to run reconstruction.

� Reconstruction: in this step, we extract the 3D geometryof the environment from the edge
detection, using a spacesweeptechnique.

� Texture : �nally , texture is computedfor each vertical facadeto producea textured 3D model
of the environment.
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Figure 10: Reconstructionpipeline

1.4 Geometrical reconstruction

1.4.1 Space-sweep algorithm

The main part of our work hasbeendoneon reconstruction. This sectiondescribeshow reconstruc-
tion basically works. As we said, we usea spacesweeptechnique. In a �rst step, each horizontal
edgeis assignedan azimuth theta using the method described in section1.1. Figure 11 shows the
results of applying this technique to two nodes. Vertical edgesare coloredblue, and others edges
are coloredwith the tile normal derived from their azimuth (e.g red is [1,0,0],greenis [0,1,0],etc...)

Figure 11: Edgedetection from two nodes- edgesare coloredaccordingto their azimuth
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Now the question is : how can the cameradecideif the edgeis horizontal or not ? The idea is
that an horizontal edgesis always assignedthe sameazimuth, whereasazimuths of non-horizontal
edgeswill vary with cameraposition. The use of statistical tools, such as histograms, allows to
determine true azimuths. The algorithm picks a dominant azimuth from each node, then reports
azimuths that are supported by several nodes. Theseazimuths are then veri�ed by the space-sweep
algorithm.

Basically, the space-sweepalgorithm sweepsthrough the spacefor each probable azimuth. At
each step, a correlation function basedon binary search trees ([7]) is calculated. This correlation
function is madesothat it reachesa peakwhenthe sweepingplanecorrespondsto the right position
of the 3D facade. For more information concerningthis function, see[8]. The area of interest is
divided into cells. For each cell, the algorithm is called, and sweepsthrough the cell (�gure 12).

Figure 12: Sweepingplanethrough a spatial regionof the dataset(in yellow) - blue domesrepresent
camerapositions. Red line segments are the projection of edgesonto a virtual vertical plane. Color
getsbrighter when edgesoverlap.

Once the whole area has beenprocessed,we apply somepost-processingto eliminate spurious
facades(�gure 13) and link tiles from di�erent grid cells to form complete facades(�gure 14).
Figure 15 shows oneway in which a spuriousfacadecan result by the interaction betweenunrelated
facadesof the sameazimuths.
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Figure 13: Reconstruction of 3D geometry
in Technology Square

Figure 14: Tech Squaregeometryafter con-
necting tiles

Camera 2
Camera 1 Camera 3

D

C

B

A

Figure 15: Somesituations may create spurious
facades

It might happenthat, for several con�gura-
tions, spuriousfacadesappear. The �gure
opposite represents such a situation. Fa-
cadesB, C and D arereal, but the program
may assignthem a fourth facade(facade
A). This casehappens for example when
a tree createsa lot of edges.In that case,
the programmay try to match the edgesof
the tree with other edges(such aswindows
edges)wich leadsto spuriousfacades.One
way to solve this problemis to enhancethe
quality of the 3-D model (e.gusingpriorit y
ordering-basedheuristic, see[8]). Another
way would be to improveedgedetectionby
�ltering out edgesin high-frequencyareas
of the image.

1.4.2 First results

This method has beenapplied �rst in Technology Square,on the east corner of MIT campus. 81
nodes have been used, i.e approximatly 4000 images. The area is 250,000square meters. The
facadeextraction took about seven hours on a Silicon Graphics O2 workstation with one R10000
processor,most of which was spent in the space-sweep algorithm. The experiment showed that
a facademust be observed by at least �v e nodes to be successfullyextracted. Figure 16 shows
the result of reconstruction. The right image is a textured model of Technology Square. The four
buildings have beenreconstructedaswell as several facadesaround the area.
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However, the reconstructionis not perfect. Wehavenoticedseveral randombehaviours and there
are still someproblemsto be solved. In the next section,we will demonstratethe improvement we
have brought to the reconstructioncode.

Figure 16: Reconstruction of Technology Square. Computation time : 7 hours on a SGI R10000
monoprocessor.Left: polygons. Right : textured model.

2 Code validation

In this section, we describe how to improve the reliabilit y of the reconstruction code. The recon-
struction dealswith a hugedatabase,and it is important to make sure that there is no bug in the
code. If the program switchestwo polygons,this may have bad consequences- such asthe creation
of a spurious facade- and such an error is quite di�cult to detect. If something is going wrong
with the program, either it comesfrom an external reason,and we have to prove it, either it comes
from an internal reason,and we have to solve it. Here we show two examplesto illustrate these
two possibilities. In the �rst example, we show in which way a bad edgedetection can have an
impact on the result of reconstruction (external problem). In the secondexample,we demonstrate
a new feature that has been implemented to improve the result of reconstruction and get rid of
somespuriousfacades(internal problem). The two examplestake placein Technology Square.

2.1 Edge detection

The reconstruction program takes as input the edge�les containing the edgesof each image for
each node. Each edgeis attributed a weight according to its length : the longer an edgeis, the
bigger its weight is. The edgedetection is made so that it takes into account all the edgesof the
image: it doesnot proceedto any �lter and a high number of edgesare irrelevant. An exampleof
possibleimprovement is shown in section5.1. In addition to this problem, edgedetection is highly
sensitive to shades: if the facadeof a building is partially in the shade,the edgedetection will be
lesse�cien t in the shadedarea. Figure 17 illustrates this phenomenon.
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Figure 17: Edgedetectionon Polaroid building in TechnologySquare- Edgeshavenot beencorrectly
detectedin the shadearea.

However, the edgedetection is an important stepof the reconstruction,and a bad edgedetection
can producea problem in the result of reconstruction. Figure 18 shows the result of reconstruction
with the edgesseenon �gure 17. As we can see,the easternfacadeof the Polaroid building hasnot
beenretrieved.

Figure 18: Reconstruction of Tech Squarebasedon automatic edges. Eastern facadeof Polaroid
building is missing.

To prove that this problem is due to a bad edgedetection, we have manually generatedthe
edgesfor the nodes which have a view on this facade- 5 nodes in total. Figure 19 shows these
edges.We have carefully detectedthe edgeson the easternfacade. The result of reconstruction is
represented on �gure 20. The easternfacadehas beensuccessfullyretrieved. As a conclusion,we
can say that edgedetection hasa strong impact on the result of reconstruction. We think that this
result is interesting, insofar as it speci�es a constraint for the observation : each facadehas to be
observed at leastsix times, and the smaller it is, the moreit needsto be observed. This information
could be usedto createa displacement algorithm for Argus for example- at the moment, Argus is
displacedmanually.
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Figure 19: Edge detection for several nodes around Polaroid building. Top : automatic edges.
Bottom : Manually generatededgesusing Gimp.

Figure 20: Reconstruction of Tech Squarebasedon manually modi�ed edges. Eastern facadeof
Polaroid building hasbeenretrieved.

2.2 Polygons �ltering

Here we discussthe caseof false facadesin reconstruction. Indeed, the results of reconstruction
sometimespresent several falsefacades.However, each facadeis supported by a number of horizontal
edges. Among the false facades,someof them are easily detectable : they are not supported by
edgesnear the ground. This meansthat thesefacadeshave beengeneratedby somespuriousedges
far away in the sky. We have implemented a �lter to detect such facades.Figure 21shows the result
of this �lter. As we can see,someof the spuriousfacadeshave beenremoved. The criteria usedin
the �lter is not speci�c to the given dataset. We considerthat a polygon is not well supported if
there is no edgesbelow four times the length of a grid cell - in the exampleof �gure 21, the grid cell
length is 500 feet. This criteria is arbitrary and should be tested on other datasets,but we believe
that it is e�cien t.
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Figure 21: Reconstruction on Tech Square without �lter (left) and with �lter (right). Several
spuriousfacadeshave beenremoved.

3 Parallel algorithms

3.1 Wh y parallelize ?

The questionof parallelizing or not parallelizing is not obvious. First, parallelizing a systemmight
be a time-consumingtask, especially if the program has not beenimplemented in a parallelizable
way. It is then important to parallelizea code only if it is rewarding in term of computation time.
Second,parallelizing a code always implies idle time and communication time. This slows down
the system and the speed-up is rarely linear. In somecases,these idle and communication time
candramatically slow down the system,and usinga parallel architecture is not rewarding anymore.
Here is a short exampleto illustrate our argument. Let us assumethat we have a 54-cardgameto
sort. It is probable that distributing the task to 4 or 5 personswill be rewarding, sincethey can
communicate quite easily. However, using54 or morepersonswould be dramatic, sinceeach person
would have nothing to do, except trying to communicate with the other persons.

In the caseof the City ScanningProject however, it is clear that parallelizing is rewarding.
Running the reconstructioncode on Technology Squaredataset takesalmost 7 hours. In addition,
since the area of interest is divided into grid cells, a part of the work has already been done,
given that the processof a cell is independent from the one of its neighbors, at least for the most
time-consumingpart of the pipeline.

Parallelizing reconstructioncode not only allows to go faster. It is alsoa progressin a sensethat
it is now possibleto think about a real-time reconstructioncode which could be usedasa feed-back
for Argus motion. We can imagine a systemin which Argus sendsthe imageson the 
o w to the
computation center and receives information which will have an impact on its future motion. For
example,if Argus hasdetecteda building on its left, it will prevent it from moving toward the left
and it will alsomake it concentrate on this building.
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3.2 First metho d

As we said, the areaof interest is divided into grid cells. We have veri�ed that, concerningthe most
time-consumingpart of the process,the processof a cell is independent of the processof the others.
Wecanthereforededucetwo di�erent methodsof parallelizing. The �rst method mapsthe grid cells
onto the cluster of machines. We have implemented a method to compute the weight of each cell.
Indeed, the computing time varies acrossthe cells and assumingthat this time is constant would
lead to a bad distribution of tasks. We have also implemented a fast method to quickly determine
the CPU power of a given machine. Given this two elements, we have implemented a program
which maps the grid cells onto the cluster. This program is completely generic. Figure 22 shows
the computing time in secondswith respect to the grid cells for the Technology Squaredataset. As
we can see,the distribution of time is far to be homogeneous.

Machine 1 Machine 2

Machine 3

Machine 5

Machine 4

Figure 22: Left: mapping of the grid cells onto the machine cluster. Right : computing time on
Technology Squarewith respect to the cells. Unit : seconds.The distribution is not homogeneous
on the grid.

Our method consistsin dividing the grid into rectangles(�gure 22) of sameweight in term of
computation time. The number of rectanglesis equal to the sum of all the CPU units available.
This number is di�erent from the number of machines. For instance, if we have three machines
(machine 1, machine 2 and machine 3) and if machine 1 has1 CPU, machine 2 has1 and machine
3 has 4, then the number of rectanglesis 6. We then distribute the rectanglesto the machines
with respect to the number of CPU units they have. In our example,machines 1 and 2 would be
attributed 1 rectangleeach, and machine 3 would be atributed 4 rectangles.

The advantage of this method is that it is 
exible and quite easyto implement. Also it allows
to have a �rst idea of the speed-upthat we can expect. However, it implies a �rst initialization of
the processto compute the weight of the cells and, as we will seein the next section, it is slower
than the secondmethod. Table 1 shows the computing time for each machine of the cluster. We
have used8 IRIX machines. The total computing time is 45 minutes. Comparing with the serial
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Mac hine Computing time (sec)
turp entine 2285
ray 2768
trace 2443
mosaic 2131
acetone 2711
hue 2342
panorama 1755
orange 1939

Table 1: Computing time for Technology Squarereconstruction (in seconds).

Mac hine Computing time (sec)
turp entine 10.96
ray 18.77
trace 17.77
mosaic 15.13
acetone 10.99
hue 18.98
panorama 10.87

Table 2: Computing time for the benchmark (in seconds)

version(7 hours), we have obtained a speed-upof 9. The distribution standard deviation is 3.4 %.
Someof the machine have several CPU units, which explains why the speed-upis higher than

the number of machines. In addition, someof the machineshavebeenupgradedwith RAM memory,
which makesthem moree�cien t. Table2 shows the result of a benchmark programfor the di�erent
machines.1.

3.3 Second metho d

Here we describe a faster and more 
exible method. The idea is still to distribute the cells to
the machines. However, this method dynamically maps the grid onto the cluster. Basically, the
method is basedon a master-worker model implemented with MPI. Each time a machine getsfree,
it receivesa cell to process.As soon as it has �nished processingthe cell, it sendsa messageto the
master in order to get a new task to do. Figure 23 represents the communication schemeof our
method. Table 3 shows the computing time for each machine of the cluster.

Each line of the table correspond to a process. We have used the samecluster as in the �rst
method. The total computation time is 30 minutes, including 3 minutes of communication and
6 minutes of idle time. The computation times in table 3 have been calculated using function
MPI Wtime(). They do not include communication time or idle time. The communication time
has beencalculated by running the program with nothing to do for each cell. The idle time has
been calculated by substracting the communication time and the computation time to the total

1The benchmark was composedof two loops of 
oat and integer computation as well as standard output
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Figure 23: Left: master-worker model. Each machine can handle several processes.Right : com-
munication scheme for the MPI implementation of the master-worker model on reconstruction
program.

Mac hine Computing time (sec) Mac hine Computing time (sec)
panorama 1246 acetone 1249

1246 1239
1248 1250
1248 1238
1250 mosaic 1255
1240 1278

turp entine 1250 trace 1276
1247 1276
1243 orange 1277
1233 hue 1268

ray 1230

Table 3: Computing time in secondsfor each process.Number of processes: 21.

processingtime. One of the reasonfor which the idle time is sohigh is that each time a systemcall
occurson the master machine, the master proceedsto a new mapping of the processes.

The conclusionof this method is that it is much faster than the previousone : the speed-upis
15. It is alsomore 
exible sinceit doesn't needany kind of static allocation at the beginning. The
program only takesas input a list of machine.

3.4 Future impro vements

Future improvements include a study of robustness.For now, if a machine crashesor is rebooted
during the process,all the information is lost and the master will wait for its answer forever. It
is possibleto implement an acknowledgement systemwhich would force the di�erent machines to
regularly senda messageto the master. This systemwould allow to quickly detect if a machine is
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down. The lost information could be then re-mapped on the lasting machines.
For now, the systemdoes not test if the machine is reachable on the network and if the user

is allowed to run a processon it. One could imagine a short initialization step during which this
would be automatically tested.

Finally, it would be interesting to automatically determine the number of processesto be run
on a machine with respect to the power of the machine. This would make the systemeven more

exible.

4 Camera position re�nemen t

The City ScanningProject is basedon geo-referencedimages.Each time Argus takesa picture, it
recordsits current GPS position as well as its intrinsic parametersand clip these information to
the image. However, the accuracyof GPS positioning is 2-3 meters,and can be even worth in bad
conditions. For this reason,the position of camerashave to be re�ned, so that we can reach an
accuracyof several centimeters.

4.1 A bundle adjustmen t code

The bundle adjustment method is basedon the idea that, if several camerasobserve the same
feature in the 3D world, it is possibleto recover the relative position of the camerasgiven the
orientation of the images.Figure 24 illustrates this method. Given a �rst approximate position of
the cameras(basically, the GPS positions), the systemtries to move the camerasaround so that it
minimizes the error on each 3D feature. Each feature is weighted with a magnitude corresponding
to the weight of the edgesfrom which the feature arises. Theoritically, if each cameraobserves 5
features,the position shouldbe perfectly re�ned. In the real case,re�nement is not soeasybecause
we actually work on sphereimageswhich are the result of a complexprocessing.Therefore,even if
the method works well, we have encountered a few problems. The main one is that the systemis
extremelysensitive to the human error during the phaseof selectionof the features. In other words,
if the user makesa mistake by selectingthe wrong point on a sphere,it might prevent the system
from re�ning well the cameras.Another problem is that it is sometimesdi�cult to �nd 5 relevant
features for each camera. Indeed, the user can selecta point only among a limited list of points
- the edgesintersections. And it sometimeshappens that an interesting point cannot be selected
becauseit is occludedby sometree for example.

Using this method, we have manually re�ned a subsetof 27 nodesin the Amesdataset. We have
then veri�ed the improvement of the cameraposethanks to epipolar geometry. But the posehave
not beenimproved enoughto allow interesting results with reconstruction. However, the results of
reconstructionhave beenimproved, and we deeplybelieve that a correct set of cameraposewould
lead to a successfulreconstructionof the area.
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Figure 24: Bundle adjustment method : given the approximate orientation and translation of the
camera(left), a new poseminimizing the error on the feature is determined (right). In the real
case,several featuresare usedin the sametime.

4.2 Epip olar geometry to ol

The City ScanningProject is also constituted of a tool called carve which allows to check the
epipolar geometry of a set of cameras. If the relative camerapose is correct, then the epipolar
geometry should also be correct. First, we select an image point for a given node. This point,
combined with the cameracenter, de�nes a line in the 3D world. If we draw the projection of this
line on the other nodes, we should seethe line passingthrough the samepoint in the 3D world.
Therefore,using3D anchors like the cornersof the buildings, we have beenable to check the camera
posebeforeand after re�nement and to comparethe results. It would be interesting to develop a
tool to demonstratethe qualitativ e improvement of the cameraposeafter re�nement. Figure 25
illustrates the idea of epipolar geometry. Figure 26 shows the epipolar geometry in Ames area
beforeand after re�nement.

5 A few more ideas

In this section,we describe several ideaswhich have emergedduring our work on the City Scanning
Project. The goal is to show how new ingredients could signi�cantly improve several stepsof the
project.

5.1 High-frequency edge �ltering

As we can seeon �gure 27, many edgesare noisy on the images.Most of the time, theseedgesare
due to high-frequencyfeaturessuch as trees. Our idea is to remove thesenoisy edgesby detecting
the areasof high-frequencyon the images.
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Figure 25: Epipolar geometry : to each 3D point seenfrom camera2 corresponds a line on the
image of camera1. This line has to passthrough the image of the 3D point on image plane of
camera1.

Figure 26: Epipolar geometry in Ames Street. Left : target point. Middle : epipolar line before
re�nement. Right : epipolar line after re�nement. The epipolar geometryhasbeenimproved during
re�nement.

The �rst step is to convert the RGB imageinto a boolean(black and white) image. This image
is then processedto detect the high-frequencyarea. To do so, we simply usea dilatation followed
by an erosion.This method hasbeensuccessfullyusedin other projects and presents the advantage
of being a real-time process.The di�erence betweenthe result of this processand the initial image
producesa mask that can be usedto lower the weight of the noisy edges.Figure 28 illustrates our
method. As we can see,the tree has beenperfectly detected. However, we can also seethat the
mask includes important edgessuch as window edges.A small improvement in the method could
certainly help getting rid of that problem.
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Figure 27: Edgedetectionon the imageplane(Ames areadataset). Many edgesare noisy (tree and
its shade). Edgesare coloredaccordingto their azimuth.

Figure 28: High-frequency�ltering. Left : boolean image corresponding to image on �gure 27 -
Middle : high-frequencydetection (dilatation-erosion) - Right : edgemask. Most of the noisy edges
have beendetected.

5.2 Impro ving Argus positioning

In section4, we have seenthat recovering the exact poseof the camerasmight be extremely com-
plicated. It is sometimesimpossibleto �nd the right cameraposeusing existing tools. In a general
manner, recovering the cameraposefrom real-world imagery implies the useof complicatedbundle
adjustment code that can hardly be fully automated.

Therefore, we have thought about a system to determine the accurate cameraposewhile Argus
is working. Indeed,we think that it is a shameto losean information that can be gatheredduring
the collect of data : why not accurately follow the motion of Argus ? The systemwould consist in
several robots which would follow Argus as it moves. Our communication schemeis the following :
at the beginning,Argus is stopped. It sendsa messageto the robots and moves. In the sametime,
the robots have recordedthe motion of Argus. This record can either be done with laser, radio
waves, imagery... The basic idea is to combine the information from the di�erent robots to accu-
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rately determinethe new position of Argus. Of course,this implies that we alsoknow the positions
of all the robots. Then Argus stopsand sendsa new messageto the robots. If Argus is occluded,
the robots have to move sothat they seeArgus again. Sofar sogood. Figure 29 illustrates the idea
of our system.

Argus

Robot 1
Robot 2

Robot 3 Robot 3

Robot 2
Robot 1

Figure 29: Several robots (here robots 1, 2 and 3) follow the motion of Argus and record it. This
systemcan be usedto recover an accurateset of posefor the images.

This idea would not be easyto implement, but it would give us a lot of information about the
motion of Argus. We think that there is a way to determine the cameraposeother than image
processing.

5.3 Alternativ e sensors

The problems encountered with edgedetection can be overcomewith the use of alternative sen-
sorssuch as IR or X-rays. Indeed, one of the main problem is that we detect noisy edgesin the
sky (clouds) or on the ground (trees). However, these features radiate very few heat in compar-
ison with buildings. Figure 30 is a snapshotof a building in the IR wavelengths. We can cleary
seethat the sky and the featuressuch as treesor road lights are black. Therefore,using this kind
of imagesasa maskcanbevery e�cien t. The useof other wavelengthscouldbevery interesting too.
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Figure 30: Copyright c
 2002: Infrared ServicesInc. - A building seenin the IR wavelengths.Noisy
features (trees, sky, road lights) are black. The black area could be usedas a mask to �lter out
edges.

6 Conclusion

The main part of our work has beendone on parallel algorithms. Even if the �nal implemented
solution seemseasy, many problemshave beenovercome�rst, including the validation of the code.
Beforerunning the reconstructioncode,wehad to check that each cell wasindependently processed,
which wasnot the casein fact. We �nally found a way to correct that. Thanks to a powerful IRIX
cluster, we have obtained a signi�cativ e speed-upof 15 and comparedtwo di�erent methods of par-
allel algorithms. The useof the 32-Linux machine cluster of the MIT Computer Graphics Group
should allow even better results.

During this work, a lot of other ideashave emergedin front of several problemswe have encoun-
tered : how can we improve cameraposere�nement ? How can we improve the edgedetection ?
How can the �nal processingof polygonsafter reconstructionbe more e�cien t ? Theseare someof
the numerousquestionswe have tried to answer. This lead us to work with several programsof the
project (re�nement, epipolar geometry, reconstruction). Someof the problems have beensolved.
Other still needsomework and, becauseof a lack of time, we could only proposesolutionsto them.

22



7 Ac kno wledgemen ts

I �rst would like to thank Prof. Seth Teller for having o�ered me the wonderful opportunit y to
work at MIT. I received full support and completetrust during my stay here,and I have to admit
that I never worked with such a feelingof freedom. My stay herehasbeenrewarding at all aspects.
Also I would like to thank Neel Master who worked with me during the �rst two months of my
stay, providing me with a full understandingand an extremely strong technical support. I learned
a lot about the project (and other stu� ) thanks to him. Thank you also to all the graphicspeople
who made my stay here so much agreable. I would like to adressa special thank to the french
company, in order of appearance: Alexis, Fredo, Yann and Stefane. Finally I would like to thank
FrancoiseLevy-dit-Vehel(ENSTA) and Prof. Laurent Li (LMD, Paris Jussieu)for having sokindly
supported me during my application at MIT.

References

[1] Teller S., MIT City ScanningProject : Fully Automated Model Acquisition in Urban Areas.
Available at : http://cit y.lcs.mit.edu//cit y.html

[2] Teller S., M. Antone, Automatic Recovery of Relative Camera Rotations in Urban Scenes,
Proc. CVPR, pp. II-282{289, June 2000.

[3] BosseM., D. de Couto & S. Teller., Eyesof Argus : Georeferencedimagery in urban environ-
ments, GPS World, April 2000,pp 20-30.

[4] Teller S., with Matthew Antone, Zachary Bodnar, Michael Bosse, Satyan Coorg, Manish
Jethwa, and NeelMaster, Calibrated, RegisteredImagesof an ExtendedUrban Area, to appear
in Proc. IEEE CVPR, December 2001.

[5] Bodnar Z., A Web Interface for a Large Calibrated Image Dataset, AUP Report MIT , May
2001.

[6] Wang X., S. Totaro, F. Taillandier, A. R. Hanson,S. Teller, Recovering FacadeTexture and
Microstructure from Real-World Images,draft paper, 2002.

[7] Bentley JL, Multidimensional Binary Search TreesUsedfor Associative Searching, Communi-
cations of the ACM, Sept. 1975,vol. 18, number 9.

[8] Coorg S., S. Teller, Automatic Extraction of Textured Vertical Facadesfrom PoseImagery,
MIT Computer GraphicsGroup, Jan. 1998.

[9] Antone M., Robust CameraPoseRecovery UsingStochastic Geometry, PhD thesis,MIT , 2001.

[10] Coorg S., PoseImagery and Automated Three-DimensionalModeling of Urban Environments,
PhD thesis,MIT , 1998.

23





8 App endix : the MIT Computer Graphics Group

The City ScanningProject hasbeendeveloped at MIT Computer GraphicsGroup, Cambridge MA.
In this section,we give a brief description of the lab and its projects.

8.1 The Massachusetts Institute of Technology

Complete information about MIT and its history can be found at : http://www.mit.edu

Mission

The missionof MIT is to advanceknowledgeand educatestudents in science,technology, and other
areasof scholarship that will best serve the nation and the world in the 21st century.

The Institute is committed to generating,disseminating,and preservingknowledge,and to working
with others to bring this knowledgeto bear on the world's great challenges. MIT is dedicatedto
providing its students with an educationthat combinesrigorousacademicstudy and the excitement
of discovery with the support and intellectual stimulation of a diversecampuscommunity. We seek
to develop in each member of the MIT community the abilit y and passionto work wisely, creatively,
and e�ectively for the betterment of humankind.

Ab out MIT

Massachusetts Institute of Technology { a coeducational, privately endowed research university {
is dedicatedto advancingknowledgeand educatingstudents in science,technology, and other areas
of scholarship that will best serve the nation and the world in the 21st century. The Institute has
more than 900 faculty and nearly 10,000undergraduateand graduate students, and is organized
into �v e Schools { Architecture and Planning, Engineering,Humanities, Arts, and Social Sciences,
Management, and Science{ and the Whitaker Collegeof Health Sciencesand Technology. Within
theseare twenty-seven degree-granting departments, programs,and divisions. In addition, a great
deal of research and teaching takes place in interdisciplinary programs, laboratories, and centers
whosework extendsbeyond traditional departmental boundaries.The board of trustees,known as
the Corporation, consistsof about 75 leadersin higher education, businessand industry, science,
engineeringand other professions.

8.2 The MIT Lab For Computer Science, LCS

Complete information about MIT LCS and its history can be found at : http://www.lcs.mit.edu.

Ab out the Lab

The MIT Laboratory for Computer Science(LCS) is an interdepartmental laboratory whoseprin-
cipal goal is research in computer scienceand engineering. It is dedicated to the invention, de-
velopment and understandingof information technologieswhich are expected to drive substantial
technical and socio-economicchange.
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LCS research hasspawned over three dozencompanies,including 3ComCorporation, Cirrus Logic,
Inc., Lotus Development Corporation, Open Market, Inc., RSA Data Security, Inc., and Akamai
Technologies,Inc. The Laboratory hoststhe USA headquartersof the World Wide WebConsortium,
an openforum of companiesand organizationswith the missionto leadthe Webto its full potential.

Currently, LCS is focusing its research on the architectures of tomorrow's information infrastruc-
tures. In the interest of making computersmore e�cien t and easierto use, LCS researchers are
putting great e�ort into human-machine communication via speech understanding;designingnew
computers,operating systems,and communications architectures for a networked world. In addi-
tion, LCS recently announcedthe launching of the Oxygenproject, an integrated collectionof eight
newtechnologies:handhelds,wall and trunk computers,a novel net, built-in speech understanding,
knowledgeaccess,collaboration, automation and customization.

Organization

Most members of LCS are a�liated with either the Department of Electrical Engineering and
Computer Science(EECS) or the Department of Mathematics at MIT. The Lab has 65 faculty
and senior research sta� members, about 50 visiting faculty members, postdoctoral students, and
research a�liates, and 180 graduate students. 100 undergraduates,working under MIT's Under-
graduate Research Opportunit y Program, also are intimately involved in LCS advancedresearch
projects. Victor Zue is the Director of LCS, Anant Agarwal and Chris Terman are serving as
Associate Directors.

8.3 The MIT Computer Graphics Group

MIT Computer Graphics Group is a research group within the MIT Lab for Computer Science.
Complete information can be found at : http://graphics.lcs.mit.edu

The MIT Computer Graphics Group was foundeda dozenof yearsagoby four professorswanting
to gather their resourcesand knowledge. It housesseveral research groups working on the latest
graphics technology. Current research projects include : Acoustic Design and Modeling, Motion
Capture, Synthesisand Analysis, Weatheringand SurfaceAppearance,Projective Drawing, Image-
Based Modeling and Photo Editing, ... The lab has 4 faculty members and about 20 graduate
students.

8.4 The Cit y Scanning Pro ject

The City ScanningProject beganapproximatly �v e years ago. Its principal investigator is Prof.
SethTeller. About 10sta� and students have worked on it during the past several years. The major
fundersare Intel Corporation, Lincoln Laboratories' AdvancedConceptsCommittee, DARPA, and
ONR MURI. The web pageof the project is : http://cit y.lcs.mit.edu
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8.5 My work at MIT

Working at MIT Computer Graphics Group has beena wonderful experienceto me. I have been
working in excellent conditions with a crowd of interesting people. The group has always be an
extremely warm place to live, providing me with a strong technical support as well as a lot of
experienceto share. Peoplereally do things well at MIT.

In a generalmanner, MIT is an amazing place to live : there's plenty of things to do there af-
ter work. MIT owns a dozenof huge libraries, including a music library providing scoresfor free.
Most of the on-campusresidenceshave a free piano - mine had a Steinway. There's something
happening every day at MIT : undergradeand gradestudents organizesocial events, theater plays,
movies, exhibitions, concerts,danceshows... and it's all so cheap!

MIT is located right betweenHarvard and Boston. Harvard is a wonderful placewith greenareas,
bookstores,and lots of activit y. One can spend hours there just looking at the peoplepassingby.
Boston is another world. It's another kind of beauty. It's rich, modern, and quiet. Everything is
much more expensive than in Cambridge - theaters and restaurants. It's a very warm placewhere
peopletalk to you when you sit on a bench, and maybe that's the reasonwhy peoplesay Boston is
a europeancity ! Quincy Market, Boston Common,BeaconHill, Back Bay, Chinatown and South
Station are the placesthat have played a role during my stay in Boston. I had to mention them.
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