MIT

The City Scanning Project :
Validation and Parallel Algorithms

Author : Olivier Koch
Advisor : Pr. Seth Teller

MIT Computer Graphics Group

http://graphics.lcs.mit.edu
olivier.koch@ensta.org







Abstract

Extract from the City ScanningProject Web Site (available at [1]):
\The "computer vision" or "machine vision" problem is a long-standing, dicult problem.
Fundamertally, it is: how cana computer algorithm, aloneor in concertwith a human, produce
a useful computational represenation of a scene,given one or more imagesof that scene?Un-
til now, whether automated or human-assisted,no acquisition system has beendemonstrated
to scaleto spatially extended, complex ervironments, under uncortrolled lighting conditions
(i.e., outdoors) and in the presenceof sewere clutter and occlusion. Given imagesof an urban
ernvironment, we wish to produce a textured geometric CAD model of the structures in that
ernvironment. This model should include geometricrepresetations of ead structure and struc-
tural feature presen, and radiometric information about the componerts of eah suc entity
(e.g., atexture map or bi-directional re ectance distribution function for ead surface). One
might think of ead image as a 2D "observation" of the world; we wish to produce a single,
textured 3D CAD model which is consistert with the totalit y of our obsenations. Moreover,
we wish to achieve a model accurate to a few certimeters, over thousandsof square meters of
ground area. Se\eral processesre very time-consuming. Reconstruction of the buildings can
take seweral hours on a MIPS 1000processor.The purp oseof our work thereforeis to map the
algorithmic componerts of the City ScanningProject onto a cluster of 32 Linux machines."
The rst sectiongivesa short overview of the City ScanningProject. We then presen our
work on code validation and parallel algorithms. In sections4 and 5, we describe our work on
cameraposere nement, as well as seweral ideas which have been proposedduring our stay.
Last section cortains a short description of the MIT Computer Graphics Group.

Commen une machine peut-elle, seule ou aidee d'un operateur humain, concewir la
represemation d'une seenea partir de photographies? De cette question est ne le City Scan-
ning Project, dirige par le professeurSeth Teller, Computer Graphics Group, Massatusetts
Institute of Tednology. A partir de photographies calibrees prises dans un ernvironnemert
urbain, le projet a pour but de reconstruire un modele en trois dimensionsde cet environ-
nemert. Le modele comprend une represetiation geometrique ainsi que desinformations sur
la texture et I'eclairemen desobjets. En considerant chaqueimage commeune "observation”
de l'environnemernt, le modele nal doit &tre conforme a I'ensenble de cesobsenations. La
precision du modele est de I'ordre de quelquescertim etres pour une surface d'environ cert
metres carres.

Le projet est constitue de nombreux algorithmes dont certains sort trescolteux en temps
decalcul. La reconstruction geometrique, par exemple,peut durer septheuressur une machine
Silicon Graphics 02 monoprocesseur. Le but principal de mon projet est de paralleliser ces
calculssur lesdi ererts clusters du groupe.

Dans un premier temps, nous decrivons le projet de maniere globale, pour presetner dans
un deuxiemetemps nos travaux sur la validation du code et le calcul parallele. Ce documert
evoque ensuite les travaux annexesqui ont ete e ectues ainsi que des idees proposes en
cours d'ouvrage. Le lecteur curieux trouvera en derniere partie desinformations sur le MIT
Computer Graphics Group.
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1 Intro duction to the City Scanning Pro ject

1.1 Theory : why is it likely to work ?

In this section, we presem somevery basic geometricideas. The questionis the following : what
makes us believe that a set of camerasis su cient to give a complete description of a 3D ervi-

ronmert ? After all, a camerahas a 2D represetation of the world. How is it possiblethat a
combination of thesecamerascan createa relevant 3D world ? In fact, a nite set of camerawill

newer be able to represemh any ervironmert. For many reasonsthe situation can be ambiguous,so
that the computer systemcannot give a completesolution to the problem. For example,if there are
too mary trees, somepart of the buildings might be occludedto the cameras,and then newer be
detected. Howe\er, this is not exactly the point of the project. The aim of the systemis to create
a 3D environment which is relevant with all the obsenations. The questionis not : is this world

true or not ? The questionis : is it relevant or not ? Now, if we considerthat we have enough
obsenations, this world will be unique, and the relevant world will correspnd to te real world,

which is not obvious in fact. Thus, given the assumptionthat the systemis intelligent enoughto

put the camerain the right positions, and a su cient number of times, we can considerthat our
systemwill be ableto represen the surroundingurban environmert. Let usnow considera camera.
It hasa 2D represetation of the world, which meansthat the information provided by this camera
is not su cient to reconstructthe 3-dimensionscene.Howeer, if we usethe right projection, and
get rid of the problem of distorsion, a line in the 3D world will be represeted by a line on the
cameraplane. Thus, the camerawill be able to detect the linesin our world. At that point, we
needa geometricaltheorem, which is quite simplein fact ([8]):

Theorem 1.1 Given the position of the camemra in the 3D world, the direction of a 3D-horizontal
edgeis completelydeterminal by the image-sce 2D line of its projection.

Figure 1 illustrates this idea. Let us give a short proof of the theorem. Let us put C the certer of
the camera,and B and E the endpoints of the edgeon the imageplane. C, B and E de ne a unique
planein the 3D world. Let us call D the intersection of this plane with any horizontal plane. Than
D is the direction of the 3D-horizortal edge. Indeed, the 3D edgebelongsto plane (B,C,E) and is
parallel to any horizontal plane sinceit is horizontal.

e

3D-horizontal edge

camera center
camera plane

Figure 1. Deducingtile azimuth from a horizortal line segmen

Why is this theorem so interesting for the City ScanningProject ? Let us considera set of
camerastaking pictures of the ervironmert and a 3D horizontal edge.Let us assumethat this edge
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is obsened by at leasttwo cameras.Accordingto the last theorem,ead cameraknowsthe direction
of the edge. If the camerasare "well positioned” in respect with the 3D edge,the edgebelongs
to the intersection of two planes,as shaovn on gure 2. Thus, using a spacesweeptechnique, the
position of the edgeis completely determined. Using this method for all the edgesit is possibleto
determine all the positions of the edgesin the 3D world, and then to reconstruct all the vertical
facades,which is an important step in the project. Indeed, vertical facadesoccur frequerly in
urban environmerns.

vertical facade

Camera 1

Figure 2: Deducingedgeposition from multiple obsenation

As we said, this is a "p erfect” situation. In the real life, many aspects make the problem more
di cult, andtwo camerasare unsu cient to detect an edge. The experiencetends to prove that,
in the caseof the City ScanningProject, at least six camerasare necessary This is mostly due to
the fact that the systemis fully automated, which meansthat there is no human operator to help
the computer go through ambiguoussituations.

1.2 Georeferenced imagery

To obsene the urban ervironment from many angles,the City ScanningProject usesArgus. The
device,deweloped by a team at the MIT Computer Graphics Group, conmbines navigation sensors,
a high-resolutiondigital camera,and various algorithms to capture georeferencedmagery of urban
ervironmerts ([3]).



1.2.1 Camera

The pose-camerais a wheeldair-sized mobile platform

with a high-resolution color digital cameramounted on a
pan-tilt head, which is itself mounted on a vertically tele-
scopingstalk. The platform alsoincludes instrumentation

to maintain estimatesof global positioning (GPS), heading
information (IMU), and dead-red&koning (optical encaders
on the wheels), all in absolute coordinates (for example,
Earth coordinates). Finally, an on-board power source
and PC provide power and cortrol to all of the devices,and
disk and tape drivesstore digital imageand pose(position,
heading, time) data. Each picture taken by the camerais
annotated with information suc as: date, GPS position,
and cameraintrinsic parameters(focale, aperture,...). The
camerais deployedin the urban area. The human operator
choosesthe positions or "nodes" from which imagesare to
be acquired, at a spacingof roughly every 10 meters, main-
taining a stando of 10-15metersfrom ead building. The
pose-cameraacquiresa spherical mosaicimage certered at
the node, and annotatesit with the on-board instrumenta-
tion's estimates of latitude, longitude, and altitude of the
camera, heading information, and the date and time, and
Figure 3. The eye of Argus storesthe resulting "p ose-image."

1.2.2 Images

The acquisition of imagesand structure of the datasetis fully descriked in [4]. Figure 4 shaws the

tiling pattern we use (typically, 47 or 71 images). Why 47 or 71 images?Around the equator, and

at 20 and 40 degreesNorth, we take twelve imagesspaced30 degreesapart. At 60 degreesNorth,

we take nine images(spaced40 degreesapart); at 80 degreedNorth, only two images(180 degrees
apart). Thetotal isthen 12+ 12+ 12+ 9+ 2= 47images.Sometimesnhodesaretakenfrom high

above ground (e.g.,from a nearby building roof, or parking garagetop level). Thesenodeshave two

extra "rings" of twelve images,at 20 and 40 degreesSouth, for atotal of 47+ 12+ 12= 71images.
Note that our "tiling" sdeme producesoverlapping images;this is necessaryfor the correlation-

basedalignmen stageto producesphericalmosaics(below). Each "tile" of the mosaicis a high-res
(1K by 1.5K by 24-bit) digital imageasshavn on gure 5. Figure 6 shovs what the imageslook like

from a xed optical certer asthe camerais rotated about it. Figure 6 also shaws the raw images
(47 images,1K x 1.5K x 24 bits ead) comprisingone node acquiredat ground level.

The next step is align ead of the imagesto form a seamlesspherical mosaic. We do so by
asseiating a quaternion with ead image,then performing numerical optimization to bestcorrelate
overlapping regions of neighboring images. Se\eral views of one resulting spherical mosaic are
represeted on gure 7. For easeof processing,we usea "spherical coordinate” represetation of
thesemosaics.We coalesceeat mosaicinto a rectangular pixel array whosehorizortal coordinate
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Figure 4: Imagery tiling pattern Figure 5: High-resdigital image

Figure 6: Left : view from the cameraoptical certer. Right : conbining raw images- Ted Square
is visible at left; Draper Labs at right.

correspndsto phi (azimuth, from 0 to 360degrees)and whosevertical coordinate correspndsto
theta (altitude, from -90 to +90 degrees).Figures 8 and 9 showv sud "spherical" images, (again)
composited from 47 sourceimages.

Ead sphericalmosaicrepresets roughly 1012x 1524 pixels/image x 47 images,or just under
75 million pixels. Thus, a squaretexture represeting the mosaicwould have a resolution of about
8,500x 8,500pixels. For technical reasongbasically, sothe mosaicscan sere well astexture maps
inside OpenGL), both their horizortal and vertical dimensionsmust be powers of two. The closest
matching powers of two which produce reasonableaspect ratios (remenber, a hemisphereis 360
degreeof azimuth and 90 degreeof altitude) are 8,192x 4,096pixels. The mosaicspictured above
are decimated;they have a resolution of 512 x 256 pixels, or 1/16th x 1/32nd = 1/512th of the
information of the full-scale mosaics! We have alsousedthe Argus and its mosaicingalgorithm to
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Figure 7: Se\eral views of a sphericalmosaic

Figure 8: Mosaic sphericalcoordinate represetation - X axis: azimuth; Y-axis : altitude

acquire sometruly high-resolution (say, 8 gigapixel= 128K x 64K) mosaicsof interesting interior
spacesaround MIT, sudt asLobby 7. Producing sphericalmosaicsyieldstwo signi cant advantages.
First, we cantreat the mosaicsasrigid, "virtual" imageswith an e ective eld of view much higher
than that of a raw image. In ensuingoptimizations, this rigid virtual image can be manipulated as
oneertity { reducing, by more than a factor of ft y, the number of free variablesto be optimized.
Secondthe wide e ective eld of view allows much more robust estimation of vanishing points and
translation direction than doesa singleimage. (In typical "frame" images,there is a fundamenal
ambiguity betweensmall rotations and small translations. This ambiguity doesnot occur for super-
hemisphericalimages).



Figure 9: Another imagetaken at twilight

1.3 The pip eline

This sectionpresens an overview of the City ScanningProject pipeline. The systemis composed
of a set of programs- ead one being attributed to a very speci ¢ task. Figure 10 represets the
whole pipeline for 3D-geometryreconstruction. This pipelineitself is included in a completesystem
including sensordeployemert as well as visualization and simulation applications. Here are some
details about ead step:

undistort : the camerafocale length may vary between 20 and 28 mm, which meansthat
it is an "abnormal” lens- 50 mm is a typical normal length. This meansthat the imageis
distorted : lines get curved. To remove this distorsion, we use a program called undistort
which usesthe camerasintrinsic parametersto undistort the images.

Mosaicing: in this step, we cornvert the set of raw imagesinto sphericalimages,as descrited
in the preceden section. Also, mosaicingis usedto re ne cameraintrinsic parametersby
rotating and translating the cameraposition. This step is very important, insofar as bad
camerapositions can lead to a bad edgecorrelation.

Edge detection : asdescriked in section1.4.1,the edgesare detectedin the cubical images.
Theseedgesare usedin the next step to run reconstruction.

Reconstruction: in this step, we extract the 3D geometry of the ervironmert from the edge
detection, using a spacesweeptechnique.

Texture: nally, texture is computedfor eat vertical facadeto producea textured 3D model
of the ervironmert.
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Figure 10: Reconstructionpipeline

1.4 Geometrical reconstruction
1.4.1 Space-sweep algorithm

The main part of our work hasbeendoneon reconstruction. This sectiondescribeshow reconstruc-
tion basically works. As we said, we use a spacesweeptechnique. In a rst step, ead horizontal
edgeis assignedan azimuth theta using the method descriked in section1.1. Figure 11 shows the
results of applying this technique to two nodes. Vertical edgesare coloredblue, and others edges
are coloredwith the tile normal derived from their azimuth (e.gredis [1,0,0],greenis [0,1,0],etc...)

Figure 11: Edge detection from two nodes- edgesare coloredaccordingto their azimuth



Now the questionis : how canthe cameradecideif the edgeis horizorntal or not ? The ideais
that an horizortal edgesis always assignedthe sameazimuth, whereasazimuths of non-horizortal
edgeswill vary with cameraposition. The use of statistical tools, sud as histograms, allows to
determine true azimuths. The algorithm picks a dominart azimuth from ead node, then reports
azimuths that are supported by seweral nodes. Theseazimuths are then veri ed by the space-swep
algorithm.

Basically, the space-swep algorithm sweepsthrough the spacefor ead probable azimuth. At
ead step, a correlation function basedon binary seart trees ([7]) is calculated. This correlation
function is madesothat it readesa peakwhenthe sweepingplane correspndsto the right position
of the 3D facade. For more information concerningthis function, see[8]. The areaof interest is
divided into cells. For ead cell, the algorithm is called, and sweepsthrough the cell ( gure 12).

Figure 12: Sweepingplanethrough a spatial regionof the dataset(in yellow) - blue domesrepresen
camerapositions. Red line segmets are the projection of edgesonto a virtual vertical plane. Color
gets brighter when edgesoverlap.

Oncethe whole area has beenprocessedwe apply somepost-processingto eliminate spurious
facades(gure 13) and link tiles from dierent grid cellsto form complete facades( gure 14).
Figure 15 showvs oneway in which a spuriousfacadecanresult by the interaction betweenunrelated
facadesof the sameazimuths.



Figure 13: Reconstruction of 3D geometry
in Tecnology Square

Camera 1
Camera 2

Camera 3

Figure 15: Somesituations may create spurious

facades

1.4.2 First results

Figure 14: Teth Squaregeometryafter con-
necting tiles

It might happenthat, for seweral con gura-

tions, spuriousfacadesappear. The gure

opposite represets sud a situation. Fa-
cadesB, C and D arereal, but the program
may assignthem a fourth facade (facade
A). This casehappens for example when
a tree createsa lot of edges.In that case,
the programmay try to match the edgesof
the tree with other edgeqsuch aswindows
edges)wich leadsto spuriousfacades.One
way to solwethis problemisto enhancethe
quality of the 3-D model (e.gusingpriority
ordering-basedheuristic, see[8]). Another
way would be to improve edgedetection by
Itering out edgesin high-frequencyareas
of the image.

This method has beenapplied rst in Tednology Square,on the eastcorner of MIT campus. 81
nodes have beenused, i.e approximatly 4000 images. The areais 250,000square meters. The
facadeextraction took about seven hours on a Silicon Graphics O2 workstation with one R10000
processor,most of which was spert in the space-swep algorithm. The experimert shoved that
a facademust be obsened by at least v e nodesto be successfullyextracted. Figure 16 shovs
the result of reconstruction. The right imageis a textured model of Tednology Square. The four
buildings have beenreconstructedas well as se\eral facadesaround the area.
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Howe\er, the reconstructionis not perfect. We have noticed seeral randombehaviours and there
are still someproblemsto be solved. In the next section,we will demonstratethe improvemen we
have brought to the reconstruction code.

Figure 16: Reconstruction of Tednology Square. Computation time : 7 hours on a SGI R10000
monoprocessor.Left: polygons. Right : textured model.

2 Code validation

In this section, we describe how to improve the reliability of the reconstruction code. The recon-
struction dealswith a huge database,and it is important to make surethat there is no bug in the
code. If the program switchestwo polygons,this may have bad consequencessud asthe creation
of a spurious facade- and sudy an error is quite di cult to detect. If somethingis going wrong
with the program, either it comesfrom an external reason,and we have to prove it, either it comes
from an internal reason,and we have to sole it. Here we shav two examplesto illustrate these
two possibilities. In the rst example,we shav in which way a bad edgedetection can have an
impact on the result of reconstruction (external problem). In the secondexample,we demonstrate
a new feature that has beenimplemerted to improve the result of reconstruction and get rid of
somespuriousfacades(internal problem). The two examplestake placein Tedinology Square.

2.1 Edge detection

The reconstruction program takes as input the edge les cortaining the edgesof eat image for
eat node. Each edgeis attributed a weight accordingto its length : the longer an edgeis, the
bigger its weigh is. The edgedetection is made sothat it takesinto accoun all the edgesof the
image: it doesnot proceedto any lter and a high number of edgesare irrelevant. An exampleof
possibleimprovemert is shovn in section5.1. In addition to this problem, edgedetectionis highly
sensitive to shades: if the facadeof a building is partially in the shade,the edgedetection will be
lesse cient in the shadedarea. Figure 17 illustrates this phenomenon.
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Figure 17: Edgedetectionon Polaroid building in Tednology Square- Edgeshave not beencorrectly
detectedin the shadearea.

Howeer, the edgedetectionis an important step of the reconstruction,and a bad edgedetection
can producea problemin the result of reconstruction. Figure 18 shows the result of reconstruction
with the edgesseenon gure 17. As we can see the easternfacadeof the Polaroid building hasnot

beenretrieved.

Figure 18: Reconstruction of Tedh Squarebasedon automatic edges. Eastern facadeof Polaroid
building is missing.

To prove that this problem is due to a bad edgedetection, we have manually generatedthe
edgesfor the nodeswhich have a view on this facade- 5 nodesin total. Figure 19 shaws these
edges.We have carefully detectedthe edgeson the easternfacade. The result of reconstructionis
represeted on gure 20. The easternfacadehas beensuccessfullyretrieved. As a conclusion,we
cansg that edgedetection hasa strong impact on the result of reconstruction. We think that this
result is interesting, insofar asit speci es a constrairt for the obsenation : ead facadehasto be
obsened at leastsix times, and the smallerit is, the moreit needsto be obsened. This information
could be usedto createa displacemen algorithm for Argus for example- at the momen, Argus is

displacedmanually.
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Figure 19: Edge detection for seweral nodes around Polaroid building. Top : automatic edges.
Bottom : Manually generatededgesusing Gimp.

Figure 20: Reconstruction of Tedh Squarebasedon manually modi ed edges. Eastern facade of
Polaroid building has beenretrieved.

2.2 Polygons ltering

Here we discussthe caseof false facadesin reconstruction. Indeed, the results of reconstruction
sometimegoresen se\eral falsefacades.Howeer, eat facadeis supported by a number of horizontal

edges. Among the false facades,someof them are easily detectable: they are not supported by

edgesnearthe ground. This meansthat thesefacadeshave beengeneratedby somespuriousedges
far away in the sky. We have implemerted a Iter to detectsud facades.Figure 21 showsthe result

of this lter. As we can see,someof the spuriousfacadeshave beenremoved. The criteria usedin

the Iter is not specic to the given dataset. We considerthat a polygon is not well supported if

there is no edgesbelow four times the length of a grid cell - in the exampleof gure 21, the grid cell

length is 500feet. This criteria is arbitrary and should be tested on other datasets,but we believe
that it is e cien t.
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Figure 21: Reconstruction on Tedr Squarewithout Iter (left) and with Iter (right). Se\eral
spuriousfacadeshave beenremoved.

3 Parallel algorithms

3.1 Why parallelize ?

The questionof parallelizing or not parallelizing is not obvious. First, parallelizing a systemmight
be a time-consumingtask, especially if the program has not beenimplemerted in a parallelizable
way. It is then important to parallelizea code only if it is rewarding in term of computation time.
Second,parallelizing a code always implies idle time and communication time. This slovs down
the systemand the speed-upis rarely linear. In somecases,theseidle and commnunication time
candramatically slov down the system,and usinga parallel architecture is not rewarding anymore.
Hereis a short exampleto illustrate our argumen. Let us assumethat we have a 54-cardgameto
sort. It is probable that distributing the task to 4 or 5 personswill be rewarding, sincethey can
communicate quite easily Howewer, using 54 or more personswould be dramatic, sinceead person
would have nothing to do, excepttrying to commnunicate with the other persons.

In the caseof the City ScanningProject howewer, it is clear that parallelizing is rewarding.
Running the reconstruction code on Tednology Squaredatasettakesalmost 7 hours. In addition,
since the area of interest is divided into grid cells, a part of the work has already been done,
given that the processof a cell is independert from the one of its neighbors, at least for the most
time-consumingpart of the pipeline.

Parallelizing reconstructioncode not only allowsto gofaster. It is alsoa progressin a sensethat
it is now possibleto think about a real-time reconstructioncode which could be usedas a feed-ba&
for Argus motion. We can imagine a systemin which Argus sendsthe imageson the ow to the
computation certer and receivesinformation which will have an impact on its future motion. For
example,if Argus hasdetecteda building on its left, it will prevent it from moving toward the left
and it will alsomake it concerrate on this building.
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3.2 First method

As we said, the areaof interest is divided into grid cells. We have veri ed that, concerningthe most
time-consumingpart of the processthe processof a cell is independert of the processof the others.
We canthereforededucetwo di erent methods of parallelizing. The rst method mapsthe grid cells
onto the cluster of macines. We have implemerted a method to compute the weight of ead cell.
Indeed, the computing time varies acrossthe cells and assumingthat this time is constart would
lead to a bad distribution of tasks. We have alsoimplemerted a fast method to quickly determine
the CPU power of a given madine. Given this two elemeits, we have implemerted a program
which mapsthe grid cellsonto the cluster. This program is completely generic. Figure 22 shavs
the computing time in secondswith respect to the grid cellsfor the Tedinology Squaredataset. As
we can see,the distribution of time is far to be homogeneous.

Machine 1 Machine 2

Machine 4

Machine 5

Figure 22: Left: mapping of the grid cellsonto the madine cluster. Right : computing time on
Tednology Squarewith respect to the cells. Unit : seconds.The distribution is not homogeneous
on the grid.

Our method consistsin dividing the grid into rectangles( gure 22) of sameweigh in term of
computation time. The number of rectanglesis equalto the sum of all the CPU units available.
This number is di erent from the number of madines. For instance, if we have three madines
(madine 1, macine 2 and macdhine 3) and if machine 1 has1 CPU, madine 2 has1 and madine
3 has 4, then the number of rectanglesis 6. We then distribute the rectanglesto the madines
with respect to the number of CPU units they have. In our example,madines 1 and 2 would be
attributed 1 rectangleead), and madine 3 would be atributed 4 rectangles.

The advantage of this method is that it is exible and quite easyto implemert. Also it allows
to have a rst idea of the speed-upthat we can expect. Howeer, it implies a rst initialization of
the processto compute the weight of the cellsand, aswe will seein the next section, it is slowver
than the secondmethod. Table 1 showns the computing time for eacy machine of the cluster. We
have used8 IRIX macdhines. The total computing time is 45 minutes. Comparing with the serial
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Mac hine | Computing time (sec)
turp ertine 2285
ray 2768
trace 2443
mosaic 2131
acetone 2711
hue 2342
panorama 1755
orange 1939

Table 1: Computing time for Tedinology Squarereconstruction (in seconds).

Mac hine | Computing time (sec)
turp ertine 10.96
ray 18.77
trace 17.77
mosaic 15.13
acetone 10.99
hue 18.98
panorama 10.87

Table 2: Computing time for the bendimark (in seconds)

version (7 hours), we have obtained a speed-upof 9. The distribution standard deviation is 3.4 %.

Someof the madine have seweral CPU units, which explainswhy the speed-upis higher than
the number of madines. In addition, someof the maciineshave beenupgradedwith RAM memory,
which makesthem moree cient. Table 2 shawnsthe result of a bendimark program for the di erent
machines’.

3.3 Second metho d

Here we descrile a faster and more exible method. The ideais still to distribute the cellsto
the madiines. Howeer, this method dynamically mapsthe grid onto the cluster. Basically, the
method is basedon a master-worker model implemerted with MPI. Each time a madine getsfree,
it receivesa cell to process.As soon asit has nished processingthe cell, it sendsa messagédo the
master in order to get a new task to do. Figure 23 represets the commnunication sdheme of our
method. Table 3 shavs the computing time for eadr macdine of the cluster.

Ead line of the table correspnd to a process. We have usedthe samecluster asin the rst
method. The total computation time is 30 minutes, including 3 minutes of commnunication and
6 minutes of idle time. The computation times in table 3 have been calculated using function
MPI _Wtime(). They do not include comnunication time or idle time. The comnunication time
has beencalculated by running the program with nothing to do for ead cell. The idle time has
been calculated by substracting the comnunication time and the computation time to the total

1The bendmark was composedof two loops of oat and integer computation aswell as standard output
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Figure 23: Left: master-worker model. Each macdiine can handle se\eral processes . Right : com-
munication scheme for the MPI implemertation of the master-worker model on reconstruction
program.

Mac hine | Computing time (sec) Machine | Computing time (sec)
panorama 1246 acetone 1249
1246 1239
1248 1250
1248 1238
1250 mosaic 1255
1240 1278
turp entine 1250 trace 1276
1247 1276
1243 orange 1277
1233 hue 1268
ray 1230

Table 3: Computing time in seconddor eat process.Number of processes 21.

processingime. One of the reasonfor which the idle time is sohigh is that ead time a systemcall
occurson the master madine, the master proceedsto a new mapping of the processes.

The conclusionof this method is that it is much faster than the previousone: the speed-upis
15. It is alsomore exible sinceit doesn't needany kind of static allocation at the beginning. The
program only takesasinput a list of machine.

3.4 Future impro vements

Future improvemeris include a study of robustness. For now, if a madine crashesor is rebooted
during the process,all the information is lost and the master will wait for its answer forewer. It
is possibleto implement an acknowledgemen systemwhich would force the di erent macinesto
regularly senda messagdo the master. This systemwould allow to quickly detect if a madine is
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down. The lost information could be then re-mapped on the lasting machines.

For now, the systemdoesnot test if the madine is readable on the network and if the user
is allowed to run a processon it. One could imagine a short initialization step during which this
would be automatically tested.

Finally, it would be interesting to automatically determine the number of processedo be run
on a madine with respect to the power of the madine. This would make the systemewven more
exible.

4 Camera position re nemen t

The City ScanningProject is basedon geo-referencedmages. Each time Argus takesa picture, it
recordsits current GPS position as well as its intrinsic parametersand clip these information to
the image. Howe\er, the accuracyof GPS positioning is 2-3 meters,and can be even worth in bad
conditions. For this reason,the position of camerashave to be re ned, sothat we canread an
accuracyof se\eral certimeters.

4.1 A bundle adjustmen t code

The bundle adjustmert method is basedon the idea that, if seweral camerasobsene the same
feature in the 3D world, it is possibleto recover the relative position of the camerasgiven the
orientation of the images. Figure 24 illustrates this method. Givena rst approximate position of
the cameras(basically, the GPS positions), the systemtries to move the camerasaround sothat it
minimizesthe error on ead 3D feature. Eadh feature is weighted with a magnitude correspnding
to the weight of the edgesfrom which the feature arises. Theoritically, if eady cameraobsenes5
features,the position shouldbe perfectly re ned. In the real case,re nement is not soeasybecause
we actually work on sphereimageswhich are the result of a complexprocessing.Therefore,even if
the method works well, we have encourtered a few problems. The main one s that the systemis
extremely sensitive to the human error during the phaseof selectionof the features. In other words,
if the user makesa mistake by selectingthe wrong point on a sphere,it might prevent the system
from re ning well the cameras.Another problem is that it is sometimesdi cult to nd 5 relevant
featuresfor eadn camera. Indeed, the user can selecta point only amonga limited list of points
- the edgesintersections. And it sometimeshappensthat an interesting point cannot be selected
becausst is occludedby sometree for example.

Usingthis method, we have manually re ned a subsetof 27 nodesin the Amesdataset. We have
then veri ed the improvemen of the cameraposethanks to epipolar geometry But the posehave
not beenimproved enoughto allow interesting results with reconstruction. Howewer, the results of
reconstruction have beenimproved, and we deeply beliewe that a correct set of cameraposewould
lead to a successfuleconstruction of the area.
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Figure 24: Bundle adjustmert method : given the approximate orientation and translation of the
camera(left), a new poseminimizing the error on the feature is determined (right). In the real
case,se\eral featuresare usedin the sametime.

4.2 Epip olar geometry tool

The City ScanningProject is also constituted of a tool called carve which allows to ched the
epipolar geometry of a set of cameras. If the relative cameraposeis correct, then the epipolar
geometry should also be correct. First, we selectan image point for a given node. This point,

combined with the cameracernter, de nes a line in the 3D world. If we draw the projection of this

line on the other nodes, we should seethe line passingthrough the samepoint in the 3D world.

Therefore,using 3D anchorslike the cornersof the buildings, we have beenableto ched the camera
posebeforeand after re nement and to comparethe results. It would be interesting to dewelop a
tool to demonstratethe qualitative improvemer of the cameraposeatfter re nement. Figure 25
illustrates the idea of epipolar geometry Figure 26 shavs the epipolar geometry in Ames area
beforeand after re nemernt.

5 A few more ideas

In this section,we descrike se\eral ideaswhich have emergedduring our work on the City Scanning
Project. The goalis to shov how new ingredierts could signi cantly improve seeral stepsof the
project.

5.1 High-frequency edge Itering

As we canseeon gure 27, many edgesare noisy on the images. Most of the time, theseedgesare
due to high-frequencyfeaturessud astrees. Our ideais to remove thesenoisy edgesby detecting
the areasof high-frequencyon the images.
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3D point

Camera 2

Camera 1 epipolar line

Figure 25: Epipolar geometry: to eat 3D point seenfrom camera2 correspnds a line on the
image of cameral. This line hasto passthrough the image of the 3D point on image plane of
cameral.

Figure 26: Epipolar geometryin Ames Street. Left : target point. Middle : epipolar line before
re nement. Right : epipolar line after re nement. The epipolar geometryhasbeenimproved during
re nemernt.

The rst stepis to convert the RGB imageinto a boolean (black and white) image. This image
is then processedo detect the high-frequencyarea. To do so, we simply usea dilatation followed
by an erosion. This method hasbeensuccessfullyusedin other projects and presets the advantage
of being a real-time process.The di erence betweenthe result of this processand the initial image
producesa maskthat can be usedto lower the weight of the noisy edges.Figure 28 illustrates our
method. As we can see,the tree has been perfectly detected. Howewer, we can also seethat the
mask includesimportant edgessud aswindow edges.A small improvemer in the method could
certainly help getting rid of that problem.
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Figure 27: Edgedetection on the imageplane (Ames areadataset). Many edgesare noisy (tree and
its shade). Edgesare coloredaccordingto their azimuth.

Figure 28: High-frequency ltering. Left : booleanimage correspnding to image on gure 27 -
Middle : high-frequencydetection (dilatation-erosion) - Right : edgemask. Most of the noisy edges
have beendetected.

5.2 Impro ving Argus positioning

In section4, we have seenthat recovering the exact poseof the camerasmight be extremely com-
plicated. It is sometimesmpossibleto nd the right cameraposeusing existing tools. In a general
manner, recovering the cameraposefrom real-world imagery implies the use of complicatedbundle
adjustmert code that can hardly be fully automated.

Therefore, we have thought about a systemto determine the accurate cameraposewhile Argus
is working. Indeed,we think that it is a shameto losean information that can be gatheredduring
the collect of data : why not accurately follow the motion of Argus ? The systemwould consistin
se\eral robots which would follow Argus asit moves. Our comnunication schemeis the following :
at the beginning, Argus is stopped. It sendsa messageo the robots and moves. In the sametime,
the robots have recordedthe motion of Argus. This record can either be done with laser, radio
waves, imagery.. The basicideais to combine the information from the di erent robots to accu-
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rately determinethe new position of Argus. Of course,this implies that we alsoknow the positions
of all the robots. Then Argus stopsand sendsa new messageo the robots. If Argus is occluded,
the robots have to move sothat they seeArgus again. Sofar sogood. Figure 29 illustrates the idea
of our system.

) % .
__________ R ’ N <~
_______ = ‘4_" ﬂ o (G &
@ Robot 1 ﬂ Robot 1

Robot 2 Robot 2

,ﬂ A— ) ) ﬂ

’ Robot 3 Robot 3
’ w\
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Figure 29: Se\eral robots (here robots 1, 2 and 3) follow the motion of Argus and recordit. This
systemcan be usedto recover an accurateset of posefor the images.

This ideawould not be easyto implemert, but it would give us a lot of information about the
motion of Argus. We think that there is a way to determine the cameraposeother than image
processing.

5.3 Alternativ e sensors

The problems encourtered with edgedetection can be overcomewith the use of alternative sen-
sorssudh as IR or X-rays. Indeed, one of the main problem is that we detect noisy edgesin the
sky (clouds) or on the ground (trees). Howeer, these featuresradiate very few heat in compar-
ison with buildings. Figure 30 is a snapshotof a building in the IR wavelengths. We can cleary
seethat the sky and the featuressud astreesor road lights are black. Therefore, using this kind
of imagesasa maskcanbevery e cient. The useof other wavelengthscould be very interestingtoo.
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Figure 30: Copyright ¢ 2002: Infrared Servicednc. - A building seenin the IR wavelengths. Noisy
features (trees, sky, road lights) are bladk. The black areacould be usedas a maskto lIter out
edges.

6 Conclusion

The main part of our work has beendone on parallel algorithms. Even if the nal implemerted
solution seemseasy many problemshave beenovercome rst, including the validation of the code.
Beforerunning the reconstructioncode, we had to ched that ead cell wasindependerly processed,
which was not the casein fact. We nally found a way to correctthat. Thanks to a powerful IRIX
cluster, we have obtained a signi cativ e speed-upof 15 and comparedtwo di erent methods of par-
allel algorithms. The useof the 32-Linux madine cluster of the MIT Computer Graphics Group
should allow even better results.

During this work, a lot of other ideashave emergedin front of seweral problemswe have encoun-
tered : how can we improve cameraposere nement ? How can we improve the edgedetection ?
How canthe nal processingof polygonsafter reconstructionbe moree cient ? Theseare someof
the numerousquestionswe have tried to answer. This lead usto work with seeral programsof the
project (re nement, epipolar geometry reconstruction). Someof the problems have been solved.
Other still needsomework and, becauseof a lack of time, we could only proposesolutionsto them.
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8 App endix : the MIT Computer Graphics Group

The City ScanningProject hasbeendeweloped at MIT Computer Graphics Group, Cambridge MA.
In this section, we give a brief description of the lab and its projects.

8.1 The Massachusetts Institute of Technology

Completeinformation about MIT and its history can be found at : http://www.mit.edu

Mission

The missionof MIT is to advanceknowledgeand educatestuderts in sciencetechnology, and other
areasof sdholarship that will best sene the nation and the world in the 21st certury.

The Institute is committed to generating,disseminating,and preservingknowledge,and to working
with othersto bring this knowledgeto bear on the world's great challenges. MIT is dedicatedto
providing its studerts with an educationthat conbinesrigorousacademicstudy and the excitemert
of discavery with the support and intellectual stimulation of a diversecampuscomnunity. We seek
to dewelopin eat menber of the MIT comnunity the ability and passionto work wisely, creatively,
and e ectively for the bettermert of humankind.

Ab out MIT

Massatwsetts Institute of Tedinology { a coeducational, privately endaved researb university {
is dedicatedto advancingknowledgeand educatingstuderts in sciencetechnology, and other areas
of scholarship that will best sene the nation and the world in the 21stcertury. The Institute has
more than 900 faculty and nearly 10,000undergraduateand graduate studerts, and is organized
into v e Scools { Architecture and Planning, Engineering,Humanities, Arts, and Sacial Sciences,
Managemem, and Science{ and the Whitaker Collegeof Health Sciencesand Tednology Within
theseare twerty-seen degree-grating departmerts, programs,and divisions. In addition, a great
deal of researb and teading takes place in interdisciplinary programs, laboratories, and certers
whosework extendsbeyond traditional departmertal boundaries. The board of trustees,known as
the Corporation, consistsof about 75 leadersin higher education, businessand industry, science,
engineeringand other professions.

8.2 The MIT Lab For Computer Science, LCS

Completeinformation about MIT LCS and its history can be found at : http://www.lcs.mit.edu.

Ab out the Lab

The MIT Laboratory for Computer Science(LCS) is an interdepartmertal laboratory whoseprin-
cipal goal is researb in computer scienceand engineering. It is dedicatedto the invertion, de-
velopmen and understanding of information technologieswhich are expectedto drive substartial
technical and sacio-economicchange.
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LCS researb hasspavned over three dozencompanies,ncluding 3Com Corporation, Cirrus Logic,
Inc., Lotus Dewelopmen Corporation, Open Market, Inc., RSA Data Security, Inc., and Akamai
Tednologies,Inc. The Laboratory hoststhe USA headquartersof the World Wide Web Consortium,
an open forum of companiesand organizationswith the missionto leadthe Web'to its full potertial.

Currently, LCS is focusingits researt on the architectures of tomorrow's information infrastruc-
tures. In the interest of making computersmore e cient and easierto use, LCS researbers are
putting great e ort into human-madine communication via speet understanding; designingnew
computers, operating systems,and comnunications architectures for a networked world. In addi-
tion, LCSrecerly announcedthe launching of the Oxygenproject, an integrated collection of eight
new technologies:handhelds,wall and trunk computers,a novel net, built-in speet understanding,
knowledgeaccesscollaboration, automation and customization.

Organization

Most members of LCS are aliated with either the Departmert of Electrical Engineering and
Computer Science(EECS) or the Departmernt of Mathematics at MIT. The Lab has 65 faculty
and seniorresearb sta memnbers, about 50 visiting faculty members, postdoctoral studerts, and
researb aliates, and 180 graduate studerts. 100 undergraduates,working under MIT's Under-
graduate Researb Opportunity Program, also are intimately involved in LCS advancedreseart
projects. Victor Zue is the Director of LCS, Anant Agarwal and Chris Terman are serving as
Assciate Directors.

8.3 The MIT Computer Graphics Group

MIT Computer Graphics Group is a researb group within the MIT Lab for Computer Science.
Completeinformation can be found at : http://graphics.lcs.mit.edu

The MIT Computer Graphics Group was foundeda dozenof yearsago by four professorswanting
to gather their resourcesand knowledge. It housesse\eral researb groupsworking on the latest
graphicstechnology Current researb projects include : Acoustic Design and Modeling, Motion
Capture, Syrnthesisand Analysis, Weatheringand SurfaceAppearance Projective Drawing, Image-
Based Modeling and Photo Editing, ... The lab has 4 faculty menbers and about 20 graduate
studerts.

8.4 The City Scanning Pro ject

The City ScanningProject beganapproximatly v e yearsago. Its principal investigator is Prof.
SethTeller. About 10sta and studerts have worked on it during the past se\eral years. The major
fundersare Intel Corporation, Lincoln Laboratories' AdvancedConceptsCommittee, DARPA, and
ONR MURI. The web pageof the project is : http://cit y.lcs.mit.edu
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8.5 My work at MIT

Working at MIT Computer Graphics Group has beena wonderful experienceto me. | have been
working in excelleth conditions with a crowd of interesting people. The group has always be an
extremely warm place to live, providing me with a strong technical support as well as a lot of
experienceto share. Peoplereally do things well at MIT.

In a generalmanner, MIT is an amazingplaceto live : there's plenty of things to do there af-
ter work. MIT owns a dozenof huge libraries, including a music library providing scoresfor free.
Most of the on-campusresidenceshave a free piano - mine had a Steinway. There's something
happening every day at MIT : undergradeand grade studerts organizesccial evens, theater plays,
movies, exhibitions, concerts,danceshows... and it's all socheap!

MIT is locatedright betweenHarvard and Boston. Harvard is a wonderful placewith greenareas,
bookstores,and lots of activity. One can spend hours there just looking at the people passingby.
Boston is another world. It's another kind of beauty. It's rich, modern, and quiet. Everything is
much more expensiwe than in Cambridge - theaters and restaurarts. It's a very warm placewhere
peopletalk to you whenyou sit on a bendh, and maybe that's the reasonwhy peoplesay Bostonis
a europeancity ! Quincy Market, Boston Common, BeaconHill, Badk Bay, Chinatown and South
Station are the placesthat have played a role during my stay in Boston. | had to mertion them.
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