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Training compute (FLOPs) of milestone Machine Learning systems over time
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https://arxiv.org/pdf/2202.05924.pdf
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Training com 1g systems over time
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Training compute (FLOPs) of milestone Machine Learning systems over time
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Training compute (FLOPs) of milestone Machine Learning systems over time
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Training compute (FLOPs) of milestone Machine Learning systems over time
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What is a Transformer?
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No, seriously... what is a Transformer?

Take the (free) youtube course by Andrej Karpathy

Read Lilian Weng’s_blog post



https://www.youtube.com/@AndrejKarpathy
https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/

Attention is a communication mechanism between tokens
in a document, with a positional embedding allowing to
incorporate ordering into sets of tokens.

QK'

T

Attention(Q, K, V) = softmax( 'V



Transformers shake up translation

Source

Abraham Lincoln (February 12, 1809 — April 15, 1865)
was an American lawyer, politician and statesman
who served as the 16th president of the United
States from 1861 until his assassination in 1865.
Lincoln led the Union through the American Civil
War to defend the nation as a constitutional union
and succeeded in abolishing slavery,...

Abraham Lincoln (12. Februar 1809 — 15. April 1865) war
ein amerikanischer Anwalt, Politiker und Staatsmann, der
von 1861 bis zu seiner Ermordung im Jahr 1865 als 16.
Prasident der Vereinigten Staaten diente. Lincoln fUhrte
die Union durch den Amerikanischen Burgerkrieg, um die
Nation als verfassungsmafige Union zu verteidigen, und
war erfolgreich bei der Abschaffung der Sklaverei.


https://arxiv.org/pdf/1706.03762.pdf
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Abraham Lincoln (February 12, 1809 — April 15, 1865)
was an American lawyer, politician and statesman
who served as the 16th president of the United
States from 1861 until his assassination in 1865.
Lincoln led the Union through the American Civil
War to defend the nation as a constitutional union
and succeeded in abolishing

Likelihood of “slavery”: 99.2%
Likelihood of “making”: 0.1%
Likelihood of “food”: 3%
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Transformers for text generation

Corpus of GPT
documents

Text
generator

Language models are few-shot learners



https://arxiv.org/pdf/2005.14165.pdf

Try it yourself! N ' \

&<

Write With Transformer

Get a modern neural network to
auto-complete your thoughts.

This web app, built by the Hugging Face team, is the official demo of the
{@i/transformers repository's text generation capabilities.

) star 93,671

https://transformer.huggingface.co/

Christopher Columbus discovered America in 1492. When he arrived, he saw a land
full of unknown natives that would eventually become the United States . And while it's
true that this discovery is one of the most famous events in our history, he didn't come



OK, this is cool, but it hallucinates 100%.



The ChatGPT epiphany

But we know how to train a machine to
learn from feedback!

It is called Reinforcement Learning (RL).

Go World Champion Lee Sedol looking confused at
move 37 by AlohaGo...



The ChatGPT epiphany

(.

‘This whole thing was just an
experiment. We had no idea
it would work so well”, Ilya

Sutskever
(full interview)
NI



https://www.youtube.com/watch?v=SjhIlw3Iffs

The main breakthrough of LLM is the discovery that
training a very large model on the simplest task (predict
the next token) could yield remarkable intelligence.



<philosophy>

Transformers are putting humankind through an existential
crisis.

With Copernicus, we discovered that we were not at the
center of the universe.

With GPT, we discover that (maybe) we are not that
intelligent after all.

</philosophy>



Human analysts
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Source


https://openai.com/blog/chatgpt

3¢
3
/

o

Midjourney

“Man hoarding tigers with a
whip, black and white drawing”




The science of human feedback (alignment)

Source

Step1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.
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Explain reinforcament

learning to a 6 year old.
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Wo give treats and
punishments to teach.
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Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This datais used
to train our
reward model.

~
G

Explain reinforcement
learning to a 6 year old.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO modelis
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.
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Once upon atime.



https://openai.com/blog/chatgpt
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The Cambrian explosion of foundational models
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Experimentation is getting much easier

2010 2018 2023

Write your own backprop loss.backward () from transformers
manually import SwinModel



Data is (relatively) small

Crowd thinking: "GPT-3 was trained on a huge chunk of the internet"”
The reality:

GPT-2 was trained on 40GB of text
GPT-3 was trained on 570GB of text (filtered from 50TB of data)
Web2Text weighs 65GB

Stable Diffusion was trained on LAION-400M (240TB). Relatively small.



Raw data is cheap, clean data is expensive

Lots of data cleaning tricks"
Clean data beats more data

Data requires significant ML effort

(1) DALL-E pretraining mitigations, OpenAl



https://openai.com/research/dall-e-2-pre-training-mitigations

Complex models are getting cheaper

New GPUs provide 5-10x speed-up every few years (H100 >> A100)

e Stable Diffusion cost $600K to train in 2021.
e Today, the same model would cost $60K.

More efficient Transformers are coming.

e Transformers are quadratic in complexity.
e n.log n Transformers are on their way.
e A $50M job becomes a $100K job.

You can finetune a 7B LLM on a single GPU in 1-2 h using techniques
like low-rank adaptation (LoRA).


https://lightning.ai/pages/community/tutorial/lora-llm/

Model performance can be predicted with 1/1,1000th of the compute.

OpenAl codebase next word prediction

Bits per word

6.0

» e Observed

Prediction
5.0 gpt-4
®
4.0
©
3.0 ®
e
@
[}

2.0 s
1.0 T T T 1

T I
100p 10n 1y 100y 0.01 1



Pre-training is still very hard

Goal: get a 175B dense model up and running by any means
necessary.

Solution:
114 pages of OPT175B logbook



https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf

Research is far from over

&

&

Durk Kingma @dpkingma - Jun 9

Why do LLMs hallucinate? TL;DR:

- LLM pretraining generally results in a well-calibrated distribution
p(completion|prompt)

- Obviously, a single sample from this distribution doesn't express the
uncertainty contained in it

- This is fixable, e.g. through sufficient RLHF/RLAIF

C) 23 1 36 QO 260 il 82.4K X,

Yann LeCun & @ylecun - Jun 10

Replying to @dpkingma

| disagree. | don't think it's fixable within the auto-regressive prediction
paradigm.

QO 15 1 6 Q 143 o 21.2K T



Summary

Data is small. Clean data is expensive.
Experimentation is (much) easier
Models are getting cheaper

Pre-training is (still) hard and expensive
Research is far from over






Take-aways for CTOs

O, O,

System complexity Hallucinations

O, O,

Pre-training is harad What is the ROI?



Thank you!

olivier.koch@gmail.com



Foundational models vs EU Al Act

Stanford Institute for Human-Centered Artificial Intelligence (HAI)

Grading Foundation Model Providers' Compliance with the Draft EU Al Act

Source: Stanford Center for Research on Foundation Madels {CRFM), Institute for Human-Centered Artificial Intelligence (HAI)
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Source


https://www.linkedin.com/feed/update/urn:li:activity:7075523349866532864?utm_source=share&utm_medium=member_desktop

Close vs open source

Two drivers for close source:
1. competitive pressure
2. safety

Open source is usually safer
Open source is going strong
The code is not enough (data matters)

The right question: is it safe?



Carbon footprint of generative Al?

Gen. Al has a significant CO2 footprint

Can the footprint be compensated with the
benefits of generative Al for the planet?



