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Introduction



Publications

CVPR’07 Olivier Koch, Seth Teller, Wide-area egomotion estimation 
from known 3D structure [pdf]

IJFR’08 Leonard et al., A Perception Driven Autonomous Urban Robot 
[pdf] 

ICCV’09 Olivier Koch, Seth Teller, Body-relative navigation using 
uncalibrated cameras [pdf] 

ICRA’10 Olivier Koch, Matthew R. Walter, Albert S. Huang, and Seth 
Teller, Ground robot navigation using uncalibrated cameras [pdf] 

http://olivierkoch.org/pub/koch_teller_cvpr2007.pdf
http://olivierkoch.org/pub/ijfr_2008.pdf
http://olivierkoch.org/pub/koch_teller_iccv2009.pdf
http://olivierkoch.org/pub/icra2010.pdf


Recommendation is everywhere



Problem statement

How to build fast and scalable machine learning algorithms in a 
context of representation learning?

Scalable representation learning and retrieval for online advertising, 
submitted to TheWebConf’21
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The recommendation task at Criteo

?

~ a few days/weeks



The recommendation task at Criteo



Challenges

1. Scale (billions of users, millions of items)

2. Latency (a few ms)

3. User churn

4. Multiple feedbacks (clicks, views)



Related work

Matrix factorization [4]

Variational auto-encoders (VAE) [1,2]

Graph networks [6,7]

Sparse linear methods [3]

Neural networks [8, 9]

Collaborative metric learning [5]



Representation learning

1. Build product embeddings from the data

2. Build user embeddings from product embeddings and the data

3. Find best products by searching for nearest neighbors around a 
user embedding



Our contributions

1. An efficient model (LED, for Lightweight Encoder-Decoder) reaching 
state-of-the-art performance with significant advantages of scale

2. A detailed architecture covering both offline training and real-time 
serving

3. Extensive experimentation demonstrating the efficiency of the 
system on real traffic over two months



Efficient models

1. Fast nearest-neighbor search
Leverage scalable KNN methods

2. Amortized inference [13]
Share the same procedure to compute user representations

3. Sampling-based losses
Use a loss sub-linear in the number of items

4. Pre-training
Leverage high-volumes of data to pre-train on common events (views), then fine-tune on 
sparser events (clicks)



Fast nearest-neighbor search

For a given user 𝑢, the system ranks items with a scoring function 
expressed as an inner product 𝑠(𝑢,𝑖) = ⟨𝑢,𝑣𝑖⟩

Finding the 𝑘 best items for user 𝑢 is thus equivalent to finding the 𝑘
nearest neighbors of 𝑢 with maximum inner product.

Fast search Pre-training Sampled losses Amortized inference



Pretraining with large-scale SVD

A U S VT
m x n m x m m x n n x n

=

Fast search Pre-training Sampled losses Amortized inference



Randomized SVD for large-scale factorization

Trick: Approximate A with a tall-and-skinny matrix Q

Fast search Pre-training Sampled losses Amortized inference



How do we find Q?

Fast search Pre-training Sampled losses Amortized inference



Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix 
decompositions, Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Journal SIAM, May 2011

Fast search Pre-training Sampled losses Amortized inference



Fine-tuning SVD embeddings

Approach 1: train

Consider the SVD-initialized embeddings as trainable parameters

Approach 2: project

Learn a matrix                such that 

Fast search Pre-training Sampled losses Amortized inference



Sampling-based losses

Unsampled loss (multinomial) uses a softmax:

and involves a costly partition function:

Fast search Pre-training Sampled losses Amortized inference



Sampling-based losses

Sampled loss 1: Complementarity Sum Sampling (CSS) [12]

Fast search Pre-training Sampled losses Amortized inference



Sampling-based losses

Sampled loss 2: Bayesian Personalized Ranking (BPR) [11]

Sampled loss 3: Negative Sampling (NS) [10]

Fast search Pre-training Sampled losses Amortized inference



Amortized inference with LED

Encode user timeline with a simple average:

Decode the user representation to retrieve recommendation scores:

Fast search Pre-training Sampled losses Amortized inference



Evaluation: key take-aways

1. Training models using a sampling-based loss (Multi-CSS, BPR or 
NS) gives results close to the state-of-the-art, while enabling 
training at scale.

2. The number of sampled negatives should be carefully set 
depending on the computation budget and performance target.

3. The LED model achieves competitive performance compared to the 
state-of-the-art despite its simplicity.

4. Pre-training embeddings on view events and fine-tuning them using 
a projection matrix is an effective way to transfer knowledge to the 
click prediction task.



Experimental setup



Metrics

Recall @ 20, 50 (top-k retrieval task)

Click rank: normalized rank of a clicked item among other items in 
one banner sorted by score. Ranges from 0.5 (random system) to 0 
(perfect system, clicked item has the highest score returned by the 
model)



Baselines

VAE: Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony 
Jebara. Variational Autoencoders for Collaborative Filtering, WWW’18. [pdf]

EASE: Harald Steck. Embarrassingly Shallow Autoencoders for Sparse Data, 
WWW’19 [pdf]

SLIM: Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for 
TopN Recommender Systems, ICDM’11 [pdf]

WMF: Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative Filtering for 
Implicit Feedback Datasets, ICDM’08. [pdf]

CML: Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, 
and Deborah Estrin. Collaborative Metric Learning, WWW’17 [pdf] 

https://arxiv.org/pdf/1802.05814.pdf
https://arxiv.org/pdf/1905.03375.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/papers/SLIM2011icdm.pdf
http://yifanhu.net/PUB/cf.pdf
http://www.cs.cornell.edu/~ylongqi/paper/HsiehYCLBE17.pdf


Making SOTA scalable with the sampled losses



More negatives is better, but with just 10 negatives, we lose 
only 5% in performance



Choosing the right init and fine-tuning method



Choosing the right init and fine-tuning method

Projection
works 
better when 
model is 
trained on 
small 
subsets of 
the dataset.



Choosing the right init and fine-tuning method

Projection
still 
performs 
decently, 
while it 
learns a 
dxd matrix 
instead of 
the full 
embedding 
matrix Ixd



LED performs better than VAE on the Products dataset
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System architecture



System architecture

Ranking algorithm 
trained on user 
feedback



Real-time performance



A/B testing in the real-world

Why?

• To demonstrate the capability of our approach

• To validate positive results with real users

Algorithms

• GBO (global best-of = most popular products)

• CBO (cluster best-of = k-means + most popular products per cluster)

• LED



A/B setup

2 months, worldwide

2 billions displays, thousands of merchants

Populations:

• A: GBO

• B: GBO + CBO

• C: GBO + CBO + LED

All feed the same 
ranking algorithm 
trained on user 
feedback



LED brings significant uplift in business metrics



The ranking algorithm (i.e. user feedback) promotes 
LED



LED shows less popular products (good for diversity)



Qualitative results



A/B testing: conclusions

LED scales to billions of users, millions of items and ms latency

LED outperforms a fairly strong industrial baseline by a wide margin

Users (through the ranking algorithm) promote the LED algorithm



Next steps

1. Adding side-information

2. Diversity

3. Explainability & fairness



Conclusion: problem statement

How to build fast and scalable machine learning algorithms in a 
context of representation learning?



Our contributions

1. An efficient model (LED, for Lightweight Encoder-Decoder) reaching 
state-of-the-art performance with significant advantages of scale

2. A detailed architecture covering both offline training and real-time 
serving

3. Extensive experimentation demonstrating the efficiency of the 
system on real traffic over two months
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