Scalable representation learning
and retfrieval for online advertising

Olivier Koch
November 24, 2020

Introduction

Publications

CVPR’07 Olivier Koch, Seth Teller, Wide-area egomotion estimation
from known 3D structure [pdf]

IJFR’08 Leonard et al., A Perception Driven Autonomous Urban Robot

[pdf]
ICCV’'09 Olivier Koch, Seth Teller, Body-relative navigation using
uncalibrated cameras [pdf]

ICRA’10 Olivier Koch, Matthew R. Walter, Albert S. Huang, and Seth
Teller, Ground robot navigation using uncalibrated cameras [pdf]

http://olivierkoch.org/pub/koch_teller_cvpr2007.pdf
http://olivierkoch.org/pub/ijfr_2008.pdf
http://olivierkoch.org/pub/koch_teller_iccv2009.pdf
http://olivierkoch.org/pub/icra2010.pdf

Recommendation is everywhere

@ oo

See what your friends are

MADE FOR MOORISSA playing

YOUR MUSIC

Discover Weekly F i enicame)

Songs B £ | Your weekly mixtape of fresh music. Enjoy new discoveries and deep cuts chosen

just for you. Updated every Monday, so save your favourites!
Albums
Made for Moorissa Tjokro by Spotify - 30 songs, 2 hr 6 min

Artists

Stations FOLLOWING

Local Files
(@] Download .

PLAYLISTS

/—\\erwf—\\ TITLE ARTIST il

i Home (feat. Jeremy Camp) Adam Cappa, Jeremy C.. 2 days ago
|Ve| S———nr e L) -

rom < ot Heroes Amanda Cook 2 days ago

l You Shine Andrew Simple 2 days ago
g 5 1 > 1 y
L R W

Police Detective TV Dramas

% g ; = Bova
Gg‘gy jf,k MY NEXT GU RN

J = DAVID LETTRRMAN | =
- T \

Plac <
[‘ = | NEw EPISODES

Problem statement

How to build fast and scalable machine learning algorithms in a
context of representation learning?

Scalable representation learning and retrieval for online advertising,
submitted to TheWebConf'21

Outline

The task

Efficient models
Experiments and results
Real-time retrieval at scale
A/B testing results

Next steps

The recommendation task at Criteo

La Redoute

SPORTS)
DIRECT.com lmberland

The recommendation task at Criteo

merchant events

L (] {} - (] {} > time

view sale
banner events
O O O L » time
display click

aggregated user timeline

B—O (] (O B—O—(1—e—1-] > time

. = “

attributed sale

Challenges

1. Scale (billions of users, millions of items)
2. Latency (a few ms)

3. User churn
4

. Multiple feedbacks (clicks, views)

Related work

Matrix factorization [4]

Variational auto-encoders (VAE) [1,2]
Graph networks [6,7]

Sparse linear methods [3]

Neural networks [8, 9]

Collaborative metric learning [5]

Representation learning

1. Build product embeddings from the data

2. Build user embeddings from product embeddings and the data

3. Find best products by searching for nearest neighbors around a
user embedding

Our contributions
1. An efficient model (LED, for Lightweight Encoder-Decoder) reaching

state-of-the-art performance with significant advantages of scale

2. A detailed architecture covering both offline training and real-time
serving

3. Extensive experimentation demonstrating the efficiency of the
system on real traffic over two months

Efficient models

1. Fast nearest-neighbor search
Leverage scalable KNN methods

2. Amortized inference [13]
Share the same procedure to compute user representations

3. Sampling-based losses
Use a loss sub-linear in the number of items

4. Pre-training

Leverage high-volumes of data to pre-train on common events (views), then fine-tune on
sparser events (clicks)

Fast nearest-neighbor search

For a given user u, the system ranks items with a scoring function
expressed as an inner product s(u,i) = (u,v,)

Finding the k best items for user u is thus equivalent to finding the k
nearest neighbors of u with maximum inner product.

Pretraining with large-scale SVD

mXn

B

= U

mXxm

=

S

mXn

VT

nxn

Randomized SVD for large-scale factorization

Trick: Approximate A with a tall-and-skinny matrix Q

(Q has orthonormal columns and A ~ QQ™A.

1. Form B = Q* A, which yields the low-rank factorization A ~ QB.
2. Compute an SVD of the small matrix: B = UXV™.
3. Set U = QU.

How do we find Q?

1/ Generate random matrix G € Rm*(k+p)

with values drawn independently from gaussian distribution
where k - target approximation rank, p - oversampling

2/ Multiply by A several times: Q = (AAT)IAG
3/ Orthogonolize after each iteration AG = QR
4/ Orthogonolize at the end Q=QR

Approximation error bound

By Corollary 1.5 from [Witten, 2013]:

14— QQTA|| < opy (VL

)1/(1—|—2q)

With n=10A9, k=100, p=30, q=3:

1A — QQTA|| < 4.19 X oy

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Journal SIAM, May 2011

I ——
Fine-tuning SVD embeddings

Approach 1: train

Consider the SVD-initialized embeddings as trainable parameters

Approach 2: project

Learn a matrix P € R4 sych that 0; =P - viSVD

Sampling-based losses

Unsampled loss (multinomial) uses a softmax:

7 (i|u) oc exp (s(u,1))

and involves a costly partition function:
Z(u) = Xi_; exp (s(u, 1))

Sampled losses

Sampling-based losses

Sampled loss 1: Complementarity Sum Sampling (CSS) [12]

I—-

N
Z; = exp (s(u, 1)) + — ; exp(s(u, n)).

Sampled losses

Sampling-based losses

Sampled loss 2: Bayesian Personalized Ranking (BPR) [11]

N
Z log o(s(u,i) —s(u,n))
n=1

Sampled loss 3: Negative Sampling (NS) [10]
N
log o(s(u, 1)) +) log (1 - o(s(u,n))).
n=1

Sampled losses

Amortized inference with LED

Encode user timeline with a simple average:

TT Z”"f

Decode the user representation to retrieve recommendation scores:

S(u’ l) = <7,Fz)> + b;

Amortized inference

Evaluation: key take-aways

1. Training models using a sampling-based loss (Multi-CSS, BPR or
NS) gives results close to the state-of-the-art, while enabling

training at scale.

2. The number of sampled negatives should be carefully set
depending on the computation budget and performance target.

3. The LED model achieves competitive performance compared to the
state-of-the-art despite its simplicity.

4. Pre-training embeddings on view events and fine-tuning them using
a projection matrix is an effective way to transfer knowledge to the
click prediction task.

Experimental setup

Table 1: Dataset statistics. Density refers to the density of
the item-item matrix.

users | items | events | density %
ML20M 136K 20K 10M 2.47
Products 587M 5M 19B 0.076

Metrics

Recall @ 20, 50 (top-k retrieval task)

Click rank: normalized rank of a clicked item among other items in
one banner sorted by score. Ranges from 0.5 (random system) to O
(perfect system, clicked item has the highest score returned by the
model)

Baselines

VAE: Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony
Jebara. Variational Autoencoders for Collaborative Filtering, WWW’18. [pdf]

EASE: Harald Steck. Embarrassingly Shallow Autoencoders for Sparse Data,
WWW’19 [pdf]

SLIM: Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for
TopN Recommender Systems, ICDM11 [pdf]

WMF: Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative Filtering for
Implicit Feedback Datasets, ICDM’08. [pdf]

CML: Cheng-Kang Hsieh, Longqgi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie,
and Deborah Estrin. Collaborative Metric Learning, WWW’'17 [pdf]

https://arxiv.org/pdf/1802.05814.pdf
https://arxiv.org/pdf/1905.03375.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/papers/SLIM2011icdm.pdf
http://yifanhu.net/PUB/cf.pdf
http://www.cs.cornell.edu/~ylongqi/paper/HsiehYCLBE17.pdf

I
Making SOTA scalable with the sampled losses

Table 2: Comparison of VAE and LED models with and with-
out sampling on ML20M. Percentages measure relative dif-
ference with the Mult-VAE. Only lines marked with a § are
scalable. The LED model trained with BPR achieves results
close to the Mult-VAE while enabling training at scale.

ML20M dataset
Model Loss Recall@20 Recall@50
VAE [24] Mu 0.396 0.537
VAE 0.382 (-3.54%) | 0.523 (-2.61%)
DAE [24] Mult 0.387 (-2.27%) | 0.524 (-2.42%)
LED Mult 0.379 (-4.29%) | 0.517 (-3.72%)
LED Mult-CSS T 0.368 (-7.07%) | 0.506 (-5.77%)
LED 0.375 (-5.30%) | 0.516 (-3.91%)
LED NS 0.375 (-5.30%) | 0.514 (-4.28%)
EASE [42] 0.391 (-1.26%) | 0.521 (-2.98%)
WMF [10] 0.360 (-9.09%) | 0.498 (-7.26%)
SLIM [32] 0.370 (-6.57%) | 0.495 (-7.82%)
CML [9] - 0.466 (-13.22%)

More negatives is better, but with just 10 negatives, we lose
only 5% in performance

(S
n

Metric
B ccall@20
e recall@50

-

i

e}

Relative Difference %

1 10 100 1000
Number of negatives

Figure 2: Relative performance drop of LED trained with
BPR instead of multinomial likelihood (smaller is better) on
ML20M. With only 10 negatives, the drop is less than 5 %.

Choosing the right init and fine-tuning method

0.55 Method
B Random, Train
s SVD, Train

SVD, Project

Recall@50
c o
N o
()] o

e
=
o

0.35

0.1 1.0 10.0 100.0
Dataset size %

Figure 3: Recall@50 of LED for different initialization and
fine-tuning methods on ML20M. The SVD embeddings are al-
ways pre-trained on the full training set. The project method
outperforms both random initialization and classical fine-
tuning for models trained on small fractions of the dataset.

Choosing the right init and fine-tuning method

0.55 Method
B Random, Train
Projectlon 0.50 Bmm SVD, Train
K 2 SVD, Project

WOTIKS % 0.45
better when S

, 0,40
model is '
trained on 0.35
small

0.1 1.0 10.0 100.0

subsets of Dataset size %
the dataset. Figure 3: Recall@50 of LED for different initialization and

fine-tuning methods on ML20M. The SVD embeddings are al-
ways pre-trained on the full training set. The project method
outperforms both random initialization and classical fine-
tuning for models trained on small fractions of the dataset.

Choosing the right init and fine-tuning method

0.55 Method
B Random, Train
Projectlon 0.50 Bmm SVD, Train
fll = SVD, Project
St % 0.45
performs g
decently, 040
while it 035
learns a
: 0.1 1.0 10.0 100.0
dxd matrix Dataset size %
instead of Figure 3: Recall@50 of LED for different initialization and
the full fine-tuning methods on ML20M. The SVD embeddings are al-
embeddi ng ways pre-trained on the full training set. The project method
matrix /xd outperforms both random initialization and classical fine-

tuning for models trained on small fractions of the dataset.

LED performs better than VAE on the Products dataset

Table 3: Impact of pre-training and fine-tuning methods
on the Products dataset. Despite its simplicity, LED outper-
forms the VAE. Pre-training is particularly effective, yield-
ing better results than random initialization.

Products dataset

Model Init Tuning R@20 | ClickRank
VAE Random Train 0.078 | 0.471

VAE SVD Train 0.083 | 0.457

VAE SVD Proj 0.091 | 0.454
LED Random Train 0.099 | 0.468

LED SVD Train 0.109 | 0.454
LED SVD Proj 0.104 | 0.450

Outline

The task

Efficient models
Experiments and results
Real-time retrieval at scale
A/B testing results

Next steps

System architecture

user timelines

y

Offline ' Online

RSVD

Indexing

LED Model
(training)

___embeddings

—— - -

product

__ >

SN—

embeddings
indices

-—————l————————

user timelines request

: .

LED model
(inference)

knn search

y

candidate products

System architecture

. LEDModel ' _
user timelines : (training) Lo
I
¢ b o o o o - - l ------- 4 :
S
/]
RSVD —> product
___embeddings
- ‘/
Indexing > embeddings
(__indices

Offline ' Online

-—————l————————

user timelines

:

request

:

LED model
(inference)

knn search

y

Ranking algorithm

candidate products — frained on user

feedback

Real-time performance

Table 4: Real-time computing performance of our system

with the LED model
Max Queries Per Second (QPS) per instance 3200
Latency @ 50th pct 500us
Latency @ 99th pct 2ms

Latency of user embedding computation @ 50th pct | 30us
Latency of user embedding computation @ 99th pct | 65us

Latency of KNN search @ 50th pct 160us
Latency of KNN search @ 99th pct 450us
Instances used in production 200

Recommendations served per day 4B

I ——
A/B testing in the real-world

Why?
« To demonstrate the capability of our approach

« To validate positive results with real users

Algorithms

« GBO (global best-of = most popular products)

« CBO (cluster best-of = k-means + most popular products per cluster)
« LED

e
A/B setup

2 months, worldwide

2 billions displays, thousands of merchants

Populations:

« A: GBO] Allfeed the same
ranking algorithm

« B: GBO + CBO ™ trained on user
feedback

« C: GBO + CBO + LED _.

LED brings significant uplift in business metrics

mms= GBO + CBO
mms= GBO + CBO + LED
GBO + CBO + LED (LARGE CATALOGS)

orger
value

sales

liks
cuc

0 1 2 3 4 5 6 71 8 9
Figure 5: A/B test results: uplift of GBO + CBO and GBO +

CBO + LED versus GBO. The uplift of GBO + CBO is scaled
to 1. Error bars represent confidence intervals at 95%.

The ranking algorithm (i.e. user feedback) promotes
LED

Table 5: Share of each algorithm in the displayed products
after ranking. The ranking model predicts clicks and sales
independently from the product origin.

A/B test population GBO | CBO | LED
A 100% 0% 0%

B 61% | 39% 0%
C 22% | 11% | 68%

LED shows less popular products (good for diversity)

. —— GBO
1.6 | | — CBO
—— LED
1.2 |
0.8 |
0.4 | ,
O —— ,_‘_"'/'—-—// Ll

0.0001 0.001 0.01 0.1 1 10 100 1000

Figure 7: Distribution of product popularity per algorithm.
x-axis: number of views per month on a log scale normalized
to 1 for GBO. Average value in dotted line. Despite showing
less popular products, LED generates more clicks and sales.

Qualitative results

Merchant 1

A/B testing: conclusions

LED scales to billions of users, millions of items and ms latency
LED outperforms a fairly strong industrial baseline by a wide margin

Users (through the ranking algorithm) promote the LED algorithm

Next steps

1. Adding side-information
2. Diversity
3. Explainability & fairness

Conclusion: problem statement

How to build fast and scalable machine learning algorithms in a
context of representation learning?

Our contributions
1. An efficient model (LED, for Lightweight Encoder-Decoder) reaching

state-of-the-art performance with significant advantages of scale

2. A detailed architecture covering both offline training and real-time
serving

3. Extensive experimentation demonstrating the efficiency of the
system on real traffic over two months

————
References (1/2)

[1] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara.
Variational Autoencoders for Collaborative Filtering, WWW’18.

[2] Harald Steck. Embarrassingly Shallow Autoencoders for Sparse Data,
WWW'19

[3] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for
TopN Recommender Systems, ICDM’11

[4] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative Filtering for
Implicit Feedback Datasets, ICDM’08.

[5] Cheng-Kang Hsieh, Longgi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie,
and Deborah Estrin. Collaborative Metric Learning, WWW'17

[6] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph Convolutional Neural Networks for Web-

Scale Recommender Systems, KDD'18

References (2/2)

[7] Jun Zhao, Zhou Zhou, Ziyu Guan, Wei Zhao, Wei Ning, Guang Qiu, and Xiaofei He.
IntentGC: A Scalable Graph Convolution Framework Fusing Heterogeneous Information
for Recommendation, KDD’18

[8] Alexandros Karatzoglou and Balazs Hidasi. Deep Learning for Recommender Systems,
RecSys’17

[9] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep Content-
based Music Recommendation, NIPS'13

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and Their Compositionality, NIPS'13

[11] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
BPR: Bayesian personalized ranking from implicit feedback, AUAI'09

[12] Aleksandar Botev, Bowen Zheng, and David Barber. Complementary Sum Sampling
for Likelihood Approximation in Large Scale Classification, PMLR'17

[13] S. Gershman and Noah D. Goodman. Amortized Inference in Probabilistic Reasoning.
Cognitive Science, 2014

