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Abstract

We present a vision-based method that assists human

navigation within unfamiliar environments. Our main con-

tribution is a novel algorithm that learns the correlation be-

tween user egomotion and feature matches on a wearable

set of uncalibrated cameras. The primary advantage of this

method is that it provides robust guidance cues in the user’s

body frame, and is tolerant to small changes in the camera

configuration. We couple this method with a topological

mapping algorithm that provides global localization within

the traversed environment. We validate our approach with

ground-truth experiments and demonstrate the method on

several real-world datasets spanning two kilometers of in-

door and outdoor walking excursions.

1. Introduction and background

Navigation is a fundamental task for humans that can

be difficult when the environment is unfamiliar or visually

complex. We consider the problem of human navigation in

unknown environments when deprived of external sources

of location, such as GPS, the sun or a compass. We propose

a vision-based solution that relies only upon a wearable set

of uncalibrated cameras. Our approach applies, in particu-

lar, to situations in which the user does not have the time or

the ability to learn the topological or metrical structure of

the environment.

Simultaneous Localization and Mapping (SLAM) is a

natural approach to navigation. Recent research in this field

has proved successful for robotic navigation in unknown en-

vironments [7, 17]. However, human navigation possesses

distinctive characteristics. First, humans do not require pre-

cise geometric directions to reach their destination. Second,

humans tend to maintain topological, rather than metrical,

representations of their environment [19] – this aspect has

inspired recent research in robotics [15, 23]. Finally, gen-

eral human motion can be challenging for current structure-

from-motion algorithms.

Figure 1. Excerpt of the GALLERIA dataset. The dotted line repre-

sents the notional path followed by the user during the first visit.

Colored squares represent nodes in the topological map. Arrows

represent the exact (not notional) guidance provided to the user

upon revisit in a replay scenario. Black circles denote failures due

to occlusion by building structure.

We propose a novel way to assist human navigation. The

method takes as input a live video stream captured while

the user moves through an unknown environment. Dur-

ing exploration, the system provides the user with several

capabilities that are critical to navigation: homing (going

from the current location to the starting point of the explo-

ration), replay (retracing the exploration path from the start-

ing point) and point-to-point navigation (going from any

previously visited place to any other). The method may be

useful for those with visual or cognitive impairments, or to

police or military personnel moving within GPS-denied en-

vironments.

We approach the problem from a topological, non-

metrical perspective. Our method builds a topological map

of the environment online during exploration, and uses it to

localize and guide the user. Specifically, we introduce an

algorithm that learns the correlation between user egomo-

tion and feature correspondence across cameras to provide

rotation guidance in the body frame of the user.



2. Related work and contributions

Recent work [7, 12, 14, 16, 17] in visual SLAM demon-

strates robust and accurate localization and mapping in

unknown environments. However, the majority of these

methods are targeted at robotics applications. Structure-

from-motion algorithms are often sensitive to degenerate

camera motions (e.g. rotation about the center of projec-

tion) and may be subject to uncontrolled map growth. As

a consequence, methods that scale to large environments

have been proposed based on topological maps [1, 15, 23].

Purely appearance-based localization has also been investi-

gated [6].

Other methods, known as teach and replay, consist of

recording the motion of image features during a training

phase. During replay, an optimal path is followed that re-

produces image-space feature motion. Early work in this

area [4] has inspired recent research [3, 22]. Omnidirec-

tional sensors have been widely used [10, 11, 21] for such

approaches, as they provide a large field of view and fewer

constraints on camera heading. Vision has also been used to

build feature-based representations of the environment for

augmented reality applications [8].

Our work is distinct from the methods described above

in several respects. First, it does not compute a metrical

reconstruction of the environment, but rather a topological

representation of the user’s path. Second, it is applicable

to an arbitrary number of uncalibrated cameras, with little

constraint on their relative positions on the user. Finally, it

provides coarse (rather than precise) navigation guidance in

the user’s body frame, rather than in a global or externally-

referenced frame.

Our method does not provide the accuracy of metrical

SLAM. However, it has the advantage of providing robust

navigation from uncalibrated cameras across large and dy-

namic environments, which makes it ideal for body-worn

applications. We demonstrate our method on extended real-

world datasets spanning more than 2 km of indoor and out-

door walking excursions (§ 4.6).

3. Method overview

Our approach relies on a topological representation of

the user’s path through the world. An undirected graph

G = (V,E) represents the explored environment, where

nodes N represent places and edges E represent physical

paths between places. We refer to a topological map as a

place graph, described in detail in § 3.1. Given the place

graph representation, we cast the navigation problem as

a “node-to-node hopping” problem (Figure 2). One sub-

method, local node estimation determines the location of

the user within the graph (§ 3.2). Another sub-method,

rotation guidance, provides a directional indication to the

user at each node (§ 3.4). Our approach provides no guid-

ance along edges and assumes that there is no ambiguity on

the direction to follow between nodes. Finally, a loop clo-

sure sub-method detects return visits to previously traversed

places, and updates the graph accordingly (§ 3.5).
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Figure 2. Method Overview. Our method takes as input a live

video stream captured from a set of body-worn, uncalibrated cam-

eras. It generates a topological representation of the explored envi-

ronment (place graph) and estimates the location of the user in the

graph (local node estimation). Rotation guidance provides body-

relative navigation guidance at each node. Loop closure detection

updates the graph when the user revisits a place. All modules run

online and in parallel during the user excursion.

3.1. The place graph

The place graph represents the user’s excursion as an

undirected graph G = (V,E). A node v ∈ V consists

of a set of visual observations Ov . We use SIFT [13] fea-

tures with 128-byte descriptors. An edge e ∈ E represents

a path followed by the user between two adjacent nodes. No

observations are associated with graph edges.

At the start of exploration, the graph G is empty. When-

ever a node is created, it is added to the graph and connected

to the most recent existing node. In the absence of loop clo-

sure detection, the graph is a simple chain. In § 3.5, we de-
scribe how to update the graph due to loop closure events.

Because a node may have several neighbors, the set Ov

is in fact a set of observations Ov = {Ov,vk
| (v, vk) ∈ E},

where Ov,vk
represents the observations made at node v on

the way to vk. Figure 3 illustrates the place graph data struc-

ture.

To determine when a node should be created, we define a

distance function Ψ for two sets of input observations. This

function matches features between the two sets and returns

the averaged sum-of-square distances between matches us-

ing the L1 distance in the feature descriptor space. We use

the Φ matching function described in § 3.3. A new node

is created when the Ψ-distance between the current obser-

vations and the observations of the latest node exceeds an

experimentally-determined threshold (we use 0.3).
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Figure 3. We represent the world as an undirected graph where

nodes represent physical locations and edges represent physical

paths between locations. Each node is associated with the obser-

vations made en route to and from each of its neighbors.

3.2. Local node estimation

The goal of local node estimation is to maintain an esti-

mate of the user’s position within the graph. Given vt
i ∈ V ,

the position of the user in G at time t, we wish to determine

vt+1

j , i.e. the position of the user at time t + 1. Assuming

that user motion is continuous, we employ a discrete local

search that takes as input the current observationsOt+1 and

searches for the node v that minimizes Ψ(Ot+1,Ov) for all
nodes v in the neighborhood of vt

i . This search spans only

a local neighborhood of vt
i and is therefore independent of

the graph size.

3.3. Feature Matching

Feature matching is difficult to optimize for small sets

in a high-dimensional space. We use a brute-force feature

matching algorithm, denoted Φ throughout this paper, com-

bined with a mutual consistency check (i.e. no two features

in one set may match the same feature in the other). We de-

fine a frame as a set of images captured by all cameras at the

same time. The algorithm takes as input two sets of observa-

tions {Oi,Oj} (or alternatively, two frames {Fi, Fj}) and
outputs the matches between them Φ(Oi,Oj) (respectively
Φ(Fi, Fj)). For large feature sets, an optimized vocabulary

tree provides fast matching (see § 3.5.1). No algorithm in

our method involves continuous frame-to-frame matching.

3.4. Body­relative rotation guidance

The purpose of body-relative rotation guidance is to

guide the user’s direction of travel. We develop our method

in this section and state the fundamental assumptions it re-

lies upon. We show that using the presence of a feature in a

camera as a measurement, rather than the feature’s precise

image-space location, removes little navigation-relevant in-

formation when the number of observations is large.

Wemodel the world as a horizontal 2D plane (Z-axis up),

and each camera as a bearing-only sensor that measures the

azimuth of each observation in the user’s body frame. We

represent a set of world feature observations as a set of q
bearing angles {αi}0≤i<q. We assume that, when revisit-

ing the same location at a later time, a subset of the same

features is observed with bearing angles {βi}0≤i<p≤q and

that the matching function Φ provides data association be-

tween the two sets. We use these two sets of observations to

determine the relative user’s orientation γ of the user with

respect to the orientation during the first visit (Figure 4). If
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Figure 4. At time t, a feature in the world (P) is observed by the

system with bearing angle α. At time t′ > t, the feature is re-

observed with bearing angle β. The angle γ = β − α defines

the relative orientation of the user between time t and time t′.

the intrinsic and extrinsic camera parameters are known, the

bearing measurements are directly available and the relative

orientation is defined as γ = 1

n

∑
0≤i<p βj − αi, where βj

matches αi. This corresponds to minimizing the average

bearing error with respect to the original user orientation

(using L1 distance). Let us now assume that the intrin-

sic camera parameters are not known. The measurements

{αi}0≤i<p are no longer observable. However, we can de-

fine a set of coarser measurements {α̂i}0≤i<p as follows:

for any observation α by a given camera, let α̂ be a constant

defined as the average of all possible observations made by

this camera. In other words, α̂ completely disregards the

location of the detection on the image and depends only

on the presence of the feature and the camera’s extrinsic

parameters. Note that, in contrast with α which is a con-

tinuous variable, α̂ is a discrete variable with n possible

values (for n cameras). The intuition behind our method is
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Figure 5. With uncalibrated cameras (represented here as the four

quadrants of a circle), the bearing measurements (α, β) are not

observable. They become discrete measurements (α̂, β̂) which are
constant within each camera. Even though the variances of α̂ − α
and β̂ − β are high, with a sufficient number of observations the

variance of γ̂ − γ will tend to zero.

that using the coarser measurement α̂, instead of the mea-

surement α itself, yields a statistically valid estimate of γ
while not requiring intrinsic calibration of the cameras (Fig-

ure 5). Assuming that the set of possible observations is

uniformly distributed in image space α = U(0, 2π), the
error between α̂ and α is a uniformly distributed variable

δ = α̂ − α ∼ U(a, b). In the configuration shown on

Figure 5, a = −π/4 and b = π/4. The associated vari-



ance is σ2
δ = (b − a)2/12, i.e. σδ ∼ 26◦. Given a suffi-

ciently large number p of bearing estimates {α̂i}0≤i<p, the

central limit theorem (CLT) states that the averaged sum of

{δi}0≤i<p is normally distributed, with a standard deviation

σ = σδ/
√

p (i.e. σ = 2.6◦ for p = 100). By additivity, the

error ǫ = γ̂ − γ is normally distributed as well, with a stan-

dard deviation σǫ = 2σ. Here, our approach assumes that

several hundred visual features are observable at all times

during exploration, which is reasonable for an omnidirec-

tional camera system in many environments.

Given two discrete observations α̂ and β̂, the variable

γ̂ = β̂ − α̂ is discrete as well. We choose to represent γ̂
as a matrix H of size n × n (for n cameras) which we call
the match matrix. The value H(i, j) represents the rotation
angle associated to a match between a feature in camera i
and a feature in camera j. The matrix H0 corresponding
to the ideal system shown in Figure 5 is given below (in
degrees). In this example, a match between camera 0 and
camera 1 yields a rotation angle of H(1, 0) = −π/2.

H =

0
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The matrix H is related to the extrinsic parameters of the
cameras but is more compact. It has two interesting prop-
erties. First, it is antisymmetric by definition. Second, it
satisfies the circular equality of Equation (1) below. We
use these properties to validate the actual match matrix ob-
tained with our system (§ 4). Also, our approach assumes
a common vantage point between observations of the same
location. However, by considering only the presence of a
feature in an image, our method introduces strong robust-
ness to parallax effects (§ 4.6). Our method is by nature
robust to slight changes in the camera positions or to minor
variations in the intrinsic calibration of the cameras.

X

0≤i<n

H(i, (i + 1) mod n) = 0 mod 2π (1)

3.4.1 Learning the match matrix from training

The match matrix must be determined when the extrinsic

parameters of the cameras are unknown. We use a method

that learns H from training. The training algorithm takes

as input a video sequence captured while the user rotates

in place clockwise nrot times in an arbitrary environment

(we use nrot = 2). The algorithm pseudo-code is given

on below. Given the number of frames in the video se-

quence f and the rotation angle of the user αpq between

any two frames {Fp, Fq | p < q}, the algorithm com-

putes the set of feature matches Φ(Fp, Fq). For each match

mk, we denote as sk,p and sk,q the start and end camera

identifier of the match. The algorithm updates the aver-

age in cell H(sk,p, sk,q) with the angle αpq . In order to

take periodicity into account, the average η̄ of m angles

{η1, · · · , ηm} is derived from averaging rotation angles us-

ing the transformation from polar to Euclidean coordinates,

i.e. η̄ = arctan(
∑

sin(ηi)/
∑

cos(ηi)). We emphasize that

the training method is fully automated, is performed only

once for a given camera configuration, and is independent

of the training environment. The matrix H is therefore sig-

nificantly easier to compute and more compact than the full

set of extrinsic parameters would be.

In practice, we assume that the user rotates in

place at constant speed and performs exactly nrot

turns, which yields the following linear expression:

αpq = 2πnrot(q − p)/f . This assumption is of course not

perfectly realized in reality. However, an error of δ degrees

spread over the training sequence generates an error on αpq

that is linear in δ. Simulations show an error of 4.7◦ for

δ = 20◦ and f = 300, which is acceptable for our applica-

tion.

The training algorithm

Input: a training video sequence of f frames

Input: the number of cameras n
Output: the n × n match matrix H

1: Initialize H(i, j) ← 0, 0 ≤ i, j < n
2: Initialize Hs(i, j) ← 0, 0 ≤ i, j < n
3: Initialize Hc(i, j) ← 0, 0 ≤ i, j < n
4: for each pair of frames (Fp, Fq) in the sequence do
5: Estimate the user rotation angle αpq linearly

6: for each match mk = (fk,p, fk,q) ∈ Φ(Fp, Fq) do
7: Let sk,p (sk,q) be the camera ID for fk,p (fk,q)

8: Hs(sk,p, sk,q) ← Hs(sk,p, sk,q) + sin(αpq)
9: Hc(sk,p, sk,q) ← Hc(sk,p, sk,q) + cos(αpq)
10: H(i, j) ← arctan(Hs(i, j)/Hc(i, j)), 0 ≤ i, j < n

3.4.2 Rotation guidance using the match matrix

Let us consider the problem of guiding the user from node

vi to one of its neighbors vj (Figure 6). The rotation guid-

ance algorithm takes as input Ovivj
, the observation made

at node vi on the way to vj during the first visit and Ot,

the current set of observations. The algorithm computes the

matches Φ(Ot,Ovivj
). Each feature match mk between a

feature on camera sk,p and a feature on camera sk,q votes

for a rotation angleH(sk,p, sk,q). The average ᾱ of all votes

represents the amount of rotation that the user should exe-

cute in the body coordinate frame in order to face in the

direction of vj .

We now consider the problem of guiding the user from a

current location vi ∈ V to a any desired location vk ∈ V .

The algorithm uses Dijkstra’s algorithm to determine the

shortest topological path {vi, · · · , vk} between vi and vk

and guides the user from node to node along the path. The

penalty along an edge is a linear function of the elapsed time

required for the first traversal of each edge.
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Figure 6. The rotation guidance algorithm matches observations

between the first visit of a node (left) and the current visit (right).

Observations are shaded by camera ID. Each match votes for a ro-

tation that contributes to bringing the user in alignment with the

orientation of the first visit. The arrow represents the forward di-

rection in the user’s body frame.

3.5. Loop closure detection

Loop closure detection, i.e. recognizing that the user has

returned to a previously seen location, is a fundamental ca-

pability for navigation. The loop closure detection method

discussed in this section operates online and works by de-

tecting sequences of nodes with similar appearances. In a

first stage, the method builds a similarity matrix between

nodes in the graph using an incremental “bag of words” al-

gorithm [5]. In a second stage, sequences of visually similar

nodes are extracted from the similarity matrix.

3.5.1 Scene similarity using a dynamic vocabulary tree

Our approach to scene similarity relies on the popular “bag

of words” approach [5], in which each image is considered

to be a document composed of “visual words”. A word

w = {cw, rw} in the vocabulary is a sphere in the fea-

ture space (in our case, 128-dimensional SIFT descriptors)

centered on cw with radius rw. The method maintains an

incremental vocabulary tree [9]. At the beginning of the

exploration, the vocabulary is empty. Each time a node is

added to the graph, its associated features are added to the

vocabulary. Each time a new feature is added, either it be-

longs to an existing word, or a new word is created. The

radius of a word rw is constant and influences the vocabu-

lary size and the performance of the recognition. We imple-

ment the vocabulary as a tree, where each leaf stores words

along with the list of node indices where the word was ob-

served. Searching the tree is optimized using a fast approx-

imate search procedure in which only the closest tree nodes

to the input feature are considered.

For each node vi added to the graph, we compute the

similarity between vi and all nodes {vj}j<i. Each word

found in vi votes for node indices using the normalized in-

verse document frequency [18]. The output of the algorithm

is a similarity matrix S which elements Si,j correspond to

the similarity between node vi and node vj (Figure 7).
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Figure 7. Each time a node is added to the graph (left), its associ-

ated features are compared to the vocabulary (middle) to compute

the similarity with all nodes seen so far. The features are then in-

serted into the vocabulary. Circles with a red dot represent words.

Black crosses represent the vocabulary tree nodes.

3.5.2 Extracting visually similar sequences

Given a similarity matrix S, we wish to identify sequences

of visually similar graph nodes. We use a modified form of

the Smith and Waterman algorithm [20] described in [12],

which computes an alignment matrix A accumulating the

score of diagonal moves through S. That is, A(i, j) is the
maximum similarity of two matching sequences ending at

node i and node j. The algorithm then finds local maxima

in the matrix and traces the corresponding sequence through

A until the similarity falls below a given threshold. The al-

gorithm is repeated on the matrix S with rows in the reverse

order to detect alignments when the user moves in the op-

posite direction.

A correspondence between a sequence of p nodes

{v1,1, · · · , v1,p} and another sequence {v2,1, · · · , v2,p}
means that nodes v1,k and v2,k correspond to the same phys-

ical location (1 ≤ k < p). We update the graph G accord-

ingly. For each k ∈ {1, · · · , p}, we connect all neighbors

of v1,k to v2,k and remove the node v1,k from the graph.

Additionally, v2,k replaces any reference to v1,k in the other

node sequences. The number p is a parameter of the al-

gorithm (we use p = 5). Figures 12(b) and 14(b) show a

typical output of the algorithm.

4. Validation and Results

4.1. System description

We tested the algorithms described in this paper on a

wearable set of four Point Grey Firefly MV cameras loosely

mounted on the shoulder straps of a backpack (Figure 8).

The cameras’ aggregate field of view is 360◦ horizontally

and about 90◦ vertically. For the sole purpose of establish-

ing ground truth (see § 4.6), a fifth camera was mounted ori-

ented upward on the backpack. The system includes a tablet

PC interface allowing the user to interact with the system,

mark places in the pose graph for the purpose of validation,

and request guidance to a target node in the graph.

4.2. Match matrix

We show below the match matrix H for our implemen-
tation, obtained using a one-minute training sequence cap-



Figure 8. Our system includes four uncalibrated cameras loosely

mounted on the shoulder straps of a backpack. The horizontal field

of view is 360◦. The system includes a laptop and can operate for

three hours on a battery charge.

tured in an arbitrary indoor environment. Note that we do
not expect H to match H0 since our system has a slightly
different camera configuration. However, the properties of
the match matrix described in § 3.4.1 provide error metrics
for the matrix. The anti-symmetry property, measured on
all entries of the matrix, yields an error of 14.5◦, while the
circular equality (Equation (1)) yields an error of 1.5◦. We
attribute this error to the fact that the user may not rotate at
exactly constant speed during training and to parallax be-
tween cameras. However, some level of error is inherent
to the system since the cameras are free to move slightly
during use.
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4.3. Rotation guidance validation

We validated the rotation guidance algorithm by rigidly

mounting an Inertial Measurement Unit (IMU) on the sys-

tem, with a drift rate of less than one degree per minute. We

captured a sequence for 30 seconds while the user rotates in

place in an arbitrary environment (different from that used

for training). We then ran the rotation guidance algorithm

between each pair of frames in the sequence, and compared

the output of the algorithm with the output of the IMU. The

standard deviation of error in the rotation guidance algo-

rithm is 8.0◦, with a worst-case error of 16◦. This level of
error would be acceptable to a human in most cases. How-

ever, situations exist where the user could be misled (e.g. at

the start of two nearly-parallel corridors).

4.4. Large­scale rotation ground truth

In order to obtain ground truth for rotation guidance all

along the exploration path, we equipped the backpack with

a high-resolution camera looking upward. We propose a

rotation baseline algorithm that takes as input two images

captured by this camera (one at the first visit of the node,

one upon revisit) and outputs the rotation angle that brings

them into alignment. This angle defines “ground truth” for

the rotation guidance algorithm. It is important to note that

not all places along the exploration path provide distinc-

tive visual features on the ceiling. Therefore, the rotation

baseline algorithm alone would not be a viable option for

navigation.

Given two input images Ip and Iq, the algorithm com-

putes SIFT feature matches between them Φ(Ip, Iq). Each
feature descriptor implies a primary orientation (Figure 9).

For each match m = (fp, fq), the algorithm computes the

difference between the orientation of fp and fq and averages

this value over all feature matches (after outlier rejection).

The output is the angle of the rotation that best aligns Ip

onto Iq. We found this method to perform robustly across

our datasets.

We validated the rotation baseline algorithm using a se-

quence containing 30 images captured by the ground truth

camera as the user rotates in place. We ran the rotation

baseline algorithm for each pair of frames in the sequence

and compared its output to that of the IMU. We obtained a

standard deviation of 1.9◦. We conclude that the rotation

baseline algorithm provides robust ground truth to the ro-

tation guidance algorithm. Figure 10(a) compares the out-

put of the rotation guidance algorithm against ground truth

obtained from the rotation baseline algorithm for 200 data

points. The standard deviation is 10.5◦.

Figure 9. Rotation baseline (LAB DATASET). Left: first image Ip.

Middle: second image Iq . Right: alignment of Ip onto Iq . SIFT

features are shown in yellow. Blue lines represent feature matches.

The algorithm estimates the rotation between the two images to

within 2◦.

4.5. Local node estimation

To obtain “ground truth” for local node estimation, we

selected checkpoints along the exploration path and marked

them with fiducials on the floor. During exploration, the

user purposely passed by each checkpoint multiple times,

and used the user interface to insert a timestamp in the cap-

tured video sequence. We then compared the output of the

local node estimation with ground truth (Figure 10(b)). We

observed that the node estimation was correct at all check-

points along the path, i.e. that it robustly estimated the user’s

position within the graph.

4.6. Real­world explorations

We demonstrate our method on three datasets described

in Table 11. The MEZZANINE dataset consists of a 10-

minute exploration in a typical laboratory environment (re-

play scenario). The GALLERIA dataset consists of a 15-

minute long exploration in a mall-type environment com-
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Figure 10. Left: Rotation guidance against rotation baseline for

200 checkpoints (GALLERIA and LAB datasets). The solid line

represents the identity. The standard deviation is 10.5◦. Right:

Output of the local node estimation (CORRIDORS dataset). Hori-

zontal lines represent the node estimate. Red dots represent ground

truth. At time t = 505, the user enters a new branch of the place

graph, hence the discontinuity in node ID (point #2 on Figure 14).

posed of large open-spaces (homing scenario). The COR-

RIDORS dataset consists of a 30 minute-long exploration

in a network of narrow corridors (point-to-point scenario).

All datasets involve cluttered and dynamic scenes (includ-

ing passers-by).

MEZZANINE

GALLERIA

CORRIDORS

replay

homing

point-to-point

10 min.

15 min.

30 min.

400m

700m

1,500m

Name Scenario Duration Length

91

154

197

# nodes

36

150

0

# checkpoints# frames

6,000

9,000

18,000

Figure 11. Exploration datasets.

In each case, the user first explores the (unknown) en-

vironment, then requests guidance for one of the scenarios.

The system outputs visual guidance as shown on Figure 13

(forward-facing cameras on the top row, backward-facing

cameras on the bottom row). The red arrow shows the actual

(not notional) guidance provided to the user. In addition, ro-

tation guidance is converted into audio cues (e.g. “turn left”,

“go straight”) uttered to the user. We emphasize that except

for the training algorithm, which is run only once, all algo-

rithms take as input a live video stream and require no batch

processing.

Figure 1 illustrates the robustness of the rotation guid-

ance algorithm to off-path trajectories in the GALLERIA

dataset. Colored squares represent nodes in the place graph.

Colored dots represent test positions at which the user was

standing facing always the same direction (Y-axis). The

resolution of the grid is three meters. Black arrows indi-

cate the actual (not notional) direction guidance given to

the user. Colors indicate the identification of the node in the

map output by the local node estimation. As can be seen,

the algorithm usually provides robust guidance even when

the user is more than three meters away from the original

path. Locations marked by a black circle indicate places

where either the node identification or the rotation guidance

failed. We explain these failures by the strong occlusion due

to building structure at these locations. Figure 14(a) shows

the exploration path for the CORRIDORS dataset overlaid on

a 2D map as well as the corresponding topological map out-
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Figure 12. Left: Upper triangular part of the similarity matrix for

the CORRIDORS dataset. Dark regions correspond to high similar-

ity (loop closure events). Right: Output of the Smith-Waterman

algorithm. Dark lines correspond to sequence alignments.

Figure 13. Left: first visit of a node (CORRIDORS dataset). Fea-

ture points are shown in yellow. Right: coming back to the same

location during a homing scenario. The red compass shows the

direction given to the user.

put by our method. This dataset resulted in relatively few

nodes, due to numerous loop closure events. Figure 12(a)

shows intermediate results (i.e. the similarity and alignment

matrices). Dark regions correspond to loop closure detec-

tion. The method is able to detect all loop closures ro-

bustly. All algorithms run on a 2.4-GHz Intel processor with

2GB of RAM. SIFT feature detection runs at 4 Hz. Using

SURF [2] instead of SIFT provides a detection rate of 8 Hz

with minor loss in matching performance. The local node

estimation runs in two seconds (500 features per node). The

rotation guidance runs at 4 Hz. The loop closure detection

processes each node in 750 ms.

5. Conclusion

We described a novel approach to body-centered navi-

gation using uncalibrated cameras. The method relies on

a topological representation of the world, and uses a learn-

ing algorithm to correlate the user’s rotation with feature

correspondence across cameras. The method shows robust

navigation guidance with an accuracy better than 15◦ on ex-
tended real-world datasets. In future work, we hope to ex-

tend our approach to 3D navigation (e.g., stairwell ascents

and descents) and explore ways to achieve higher rotation

accuracy.
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Figure 14. Floor plan of the explored environment for the CORRIDORS dataset (left) and corresponding topological map displayed with a

spring-mass model (right). The exploration path (shown as a dotted line) was: 1, 2, 3, 4, 1, 2, 5, 6, 4, 1, 7, 1, 4, 3, 2, 1, 7, 1. Exploration

includes both indoor and outdoor environments over a course of 1, 500 meters (30 minutes).
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[23] W. Zhang and J. Košecká. Hierarchical building recognition.

Image and Vision Computing, 25(5):704–716, 2007.


